MTH 4436 Homework Set 4.3; p. 73 2-7

Summer 2023

Pat Rossi
Name \qquad
2. Prove the following statements:
(a) For any integer a, the units digit of a^{2} is $0,1,4,5,6$, or 9 .

The key observation here, is that the units digit of a^{2} is congruent to $a^{2}(\bmod 10)$.
Also, if m is the units digit of n, then \exists a natural number k, such that $n=10 k+m$. For example, $n=1295$ can be written as

$$
n=(10)(129)+5
$$

At any rate, the units digit of a^{2} is equal to $a^{2}(\bmod 10) \equiv(10 k+m)^{2}(\bmod 10) \equiv$ $m^{2}(\bmod 10)$.

There are 10 cases:

$m=$	units digit $=m^{2}(\bmod 10)$
0	0
1	1
2	4
3	9
4	6
5	5
6	6
7	9
8	4
9	1

Thus, the units digit of a^{2} is either $0,1,4,5,6$, or 9 .
(b) Any one of the digits $0,1,2,3,4,5,6,7,8,9$ can occur as the units digit of a^{3}. The key observation here, is that the units digit of a^{3} is congruent to $a^{3}(\bmod 10)$. Also, if m is the units digit of n, then \exists a natural number k, such that $n=10 k+m$. The units digit of a^{3} is equal to $a^{3}(\bmod 10) \equiv(10 k+m)^{3}(\bmod 10) \equiv m^{3}(\bmod 10)$. There are 10 cases:

$m=$	units digit $=m^{3}(\bmod 10)$
0	0
1	1
2	8
3	7
4	4
5	5
6	6
7	3
8	2
9	9

Thus, the units digit of a^{3} can be any one of the digits $0,1,2,3,4,5,6,7,8,9$.
(c) For any integer a, the units digit of a^{4} is $0,1,5$, or 6 .

Again, the key observation here, is that the units digit of a^{4} is congruent to $a^{4}(\bmod 10)$.

Also, if m is the units digit of n, then \exists a natural number k, such that $n=10 k+m$.
The units digit of a^{4} is equal to $a^{4}(\bmod 10) \equiv(10 k+m)^{4}(\bmod 10) \equiv m^{4}(\bmod 10)$. There are 10 cases:

$m=$	units digit $=m^{4}(\bmod 10)$
0	0
1	1
2	6
3	1
4	6
5	5
6	6
7	1
8	6
9	1

Thus, the units digit of a^{4} is either $0,1,5$, or 6 .
(d) The units digit of a triangular number is either $0,1,3,5,6$, or 8 .

Let t_{n} be the $n^{\text {th }}$ triangular number. As before, the units digit of t_{n} is congruent to $t_{n}(\bmod 10)$.

By problem 1a, in set 1.1, $t_{n}=\frac{n(n+1)}{2}$. i.e. $t_{n}=\frac{n^{2}+n}{2}$

m	$m^{2}(\bmod 10)$	$\left(m^{2}+m\right)(\bmod 10)$	$\frac{\left(m^{2}+m\right)}{2}(\bmod 10)$
0	0	0	0,5
1	1	2	1,6
2	4	6	3,8
3	9	2	1,6
4	6	0	0,5
5	5	0	0,5
6	6	2	1,6
7	9	6	3,8
8	4	2	1,6
9	1	0	0,5

Thus, the units digit of a triangular number is either $0,1,3,5,6$, or 8 .
3. Find the last two digits of the number $9^{9^{9}}$. [Hint: $9^{9} \equiv 9(\bmod 10) ;$ hence, $9^{9^{9}}=9^{9+10 k}$; now use the fact that $\left.9^{9} \equiv 89(\bmod 100)\right]$

First, let's verify these hints:
$9^{9} \equiv 9(\bmod 10)$

Observe: $9 \equiv-1(\bmod 10)$
Hence, $9^{9} \equiv(-1)^{9}(\bmod 10) \equiv-1(\bmod 10) \equiv 9(\bmod 10)$ i.e., $9^{9} \equiv 9(\bmod 10)$
$9^{9^{9}}=9^{9+10 k}$

Observe: $9^{9} \equiv 9(\bmod 10) \Rightarrow 9^{9}-9=10 k$, for some $k \in \mathbb{Z}, \Rightarrow 9^{9}=9+10 k$, for some $k \in \mathbb{Z}$
i.e., $9^{9}=9+10 k$

Hence, $9^{99}=9^{9+10 k}$

$$
9^{9} \equiv 89(\bmod 100)
$$

I don't think that there's a really clever way to do this:
Observe: $9^{2}=81 \cdot 9=729 \cdot 9 \equiv 29 \cdot 9=261 \equiv 61 \cdot 9=549$
$9^{3}=9^{2} \cdot 9=81 \cdot 9 \equiv(-19) \cdot 9(\bmod 100) \equiv(-171)(\bmod 100) \equiv 29(\bmod 100)$
i.e. $9^{3} \equiv 29(\bmod 100)$
$9^{6}=\left(9^{3}\right)^{2} \equiv(29)^{2}(\bmod 100) \equiv 841(\bmod 100) \equiv 41(\bmod 100)$
i.e., $9^{6} \equiv 41(\bmod 100)$
$9^{9}=9^{3} 9^{6} \equiv(29)(41)(\bmod 100) \equiv 1189(\bmod 100) \equiv 89(\bmod 100)$
i.e., $9^{9} \equiv 89(\bmod 100)$

Now . . . Back to our exercise!!!
Find the last two digits of the number $9^{9^{9}}$

Observe:

$$
\begin{aligned}
9^{9^{9}} & =9^{9+10 k}=9^{9} \cdot 9^{10 k}=9^{9} \cdot\left(9^{10}\right)^{k}=9^{9} \cdot\left(9^{9} \cdot 9\right)^{k} \equiv 9^{9} \cdot((89)(9))^{k}(\bmod 100) \\
& \equiv 9^{9} \cdot((-11)(9))^{k}(\bmod 100) \equiv 9^{9} \cdot((1))^{k}(\bmod 100) \equiv 9^{9} \cdot 1(\bmod 100) \equiv 9^{9}(\bmod 100) \\
& \equiv 89(\bmod 100)
\end{aligned}
$$

i.e., $9^{9^{9}} \equiv 89(\bmod 100)$

Hence, the last two digits of $9^{9^{9}}$ are 89 .
4. Without performing the divisions, determine whether the integers $176,521,221$ and $149,235,678$ are divisible by 9 or 11 .

176, 521, 221
Observe: $1+7+6+5+2+1+2+2+1=27$, which is divisible by 9 .
Since $9|(1+7+6+5+2+1+2+2+1), 9| 176,521,221$ also.
Note also, that $1-2+2-1+2-5+6-7+1=-3$, which is NOT divisible by 11 .
Since $11 \nmid(1-2+2-1+2-5+6-7+)$, it follows that $11 \nmid 176,521,221$.

$$
\begin{array}{|l|}
\hline \hline 149,235,678 \\
\hline
\end{array}
$$

Observe: $1+4+9+2+3+5+6+7+8=45$, which is divisible by 9 .
Since $9|(1+4+9+2+3+5+6+7+8), 9| 149,235,678$ also.
Note also, that $8-7+6-5+3-2+9-4+1=9$ which is NOT divisible by 11 .
Since $11 \nmid(8-7+6-5+3-2+9-4+1)$, it follows that $11 \nmid 176,521,221$.
5.
(a) Obtain the following generalization of Theorem 4.5: If the integer \mathbf{N} is represented in base b by

$$
\mathbf{N}=a_{m} b^{m}+a_{m-1} b^{m-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0} \quad 0 \leq a_{k} \leq b-1
$$

Then $(b-1) \mid \mathbf{N}$ if and only if $(b-1) \mid S$, where $S=\left(a_{m}+a_{m-1}+\ldots+a_{2}+a_{1}+a_{0}\right)$.
Proof. Consider the polynomial with integer coefficients, $P(x)=\sum_{k=0}^{m} a_{k} x^{k}$.
Observe: $b \equiv 1(\bmod (b-1))$.
Hence, $P(b) \equiv P(1)(\bmod (b-1))$.
But here's the catch:

$$
\begin{aligned}
P(b) & =a_{m} b^{m}+a_{k-1} b^{m-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0} b^{0} \\
& =N
\end{aligned}
$$

and

$$
\begin{aligned}
P(1) & =a_{m}(1)^{m}+a_{m-1}(1)^{m-1}+\ldots+a_{2}(1)^{2}+a_{1}(1)^{1}+a_{0}(1)^{0} \\
& =a_{m}+a_{m-1}+\ldots+a_{2}+a_{1}+a_{0} \\
& =S
\end{aligned}
$$

Now suppose that $(b-1) \mid N$.
Since, $N=P(b)$, this is true if and only if $(b-1) \mid P(b)$.
$\Leftrightarrow P(b) \equiv 0(\bmod (b-1))$.
Since, $P(b) \equiv P(1)(\bmod (b-1))$, this is true if and only if $P(1) \equiv 0(\bmod (b-1))$,
Which, in turn, is true if and only if $(b-1) \mid P(1)$,
and this is true if and only if $9 \mid S$.
(b) Give criteria for the divisibility of N by 3 and 8 that depend on the digits of N when written in base 9 .

$$
\begin{array}{||l||}
\hline \hline 3 \\
\hline
\end{array}
$$

Given that $\mathbf{N}=a_{m} 9^{m}+a_{m-1} 9^{m-1}+\ldots+a_{2} 9^{2}+a_{1} 9^{1}+a_{0}$,
observe that $\left(a_{m} 9^{m}+a_{m-1} 9^{m-1}+\ldots+a_{2} 9^{2}+a_{1} 9^{1}\right) \equiv 0(\bmod 3)$.
Hence, $\mathbf{N}=\left(a_{m} 9^{m}+a_{m-1} 9^{m-1}+\ldots+a_{2} 9^{2}+a_{1} 9^{1}+a_{0}\right) \equiv a_{0}(\bmod 3)$.
i.e., $\mathbf{N} \equiv a_{0}(\bmod 3)$.

Observe:

$3\left|N \Leftrightarrow \mathbf{N} \equiv 0(\bmod 3) \Leftrightarrow a_{0} \equiv 0(\bmod 3) \Leftrightarrow 3\right| a_{0}$.
Hence, $3 \mid N$ if and only if $3 \mid a_{0}$.
8
If we let $b=9$, then $(b-1)=8$.
By part a, If the integer \mathbf{N} is represented in base 9 by

$$
\mathbf{N}=a_{m} 9^{m}+a_{m-1} 9^{m-1}+\ldots+a_{2} 9^{2}+a_{1} 9^{1}+a_{0} \quad 0 \leq a_{k} \leq 8
$$

Then $8 \mid \mathbf{N}$ if and only if $8 \mid\left(a_{m}+a_{m-1}+\ldots+a_{2}+a_{1}+a_{0}\right)$.
(c) Is the number $(447836)_{9}$ divisible by 3 and 8 ?
|
$a_{0}=6$.
Since $3 \mid a_{0}$, it follows that $3 \mid(447836)_{9}$ 8

Observe: $4+4+7+8+3+6=32_{10}$
Since $8 \mid 32_{10}$ it follows that $8 \mid(447836)_{9}$
6. Working modulo 9 or 11 , find the missing digits in the calculations below:
(a) $51840 \cdot 273581=1418243 x 040$.

Observe: $9 \mid(5+1+8+4+0)$, hence, $9 \mid(51840)$.
Since $51840 \cdot 273581=1418243 x 040$, it follows that $9 \mid(1418243 x 040)$.
Hence, $9|(1+4+1+8+2+4+3+x+0+4+0) \Rightarrow 9|(27+x) \Rightarrow 9 \mid x$
\Rightarrow either $x=0$ or $x=9$
Unfortunately, in this case, the "divisibility by 9 criterion" turns out to be inconclusive.

OK, so let's try using the "divisibility by 11 criterion."
Observe: $11 \mid(1-8+5-3+7-2)$, hence $11 \mid 273581$.
Since $51840 \cdot 273581=1418243 x 040$ and 11 divides a factor of the Left Hand side of the equation, it follows that 11 divides the Right Hand side of the equation.
i.e., $11 \mid(1418243 x 040)$.

Hence, $11|(0-4+0-x+3-4+2-8+1-4+1) \Rightarrow 11|(-13-x) \Rightarrow 11 \mid(13+x)$
$\Rightarrow x=9$
(b) $2 x 99561=[3(523+x)]^{2}$.

Observe: $2 x 99561=[3(523+x)]^{2}=9(523+x)^{2}$
The point of this observation is that $9 \mid 2 x 99561$.
Hence, $9|(2+x+9+9+5+6+1) \Rightarrow 9|(32+x) \Rightarrow x=4$.
Let's check: $[3(523+4)]^{2}=1581^{2}=2499561$.
Check!
(c) $2784 x=x \cdot 5569$

At first glance, it appears that we won't be able to "find the missing digit, working modulo 9 or 11."

If we try applying the "divisibility by 9 criterion," we see that, in order for $2784 x$ to be divisible by $9, x$ must be equal to 6 . However, since $(5+5+6+9)=25$, no value of x , other than $x=9$, will make $x \cdot 5569$ divisible by 9 .

If we try applying the "divisibility by 11 criterion" to the right hand side of the equation:

$$
x \cdot 5569
$$

we see that, $(9-6+5-5)=3$.
Hence, 5569 does not have a factor of 11. Therefore, the only value of x that will make $x \cdot 5569$ divisible by 11 is $x=11$.

Since, from the context of this exercise (see the left hand side of the equation), x is a digit, the conclusion that $x=11$ is an impossibility.

Thus, the "divisibility by 11 criterion" does not seem to be applicable either.
(d) in order for $2784 x$ to be divisible by $11,11(x-4+8-7+2) \Rightarrow x=1$.

However, since $(9-6+5-5)=3$, it follows that 5569 does not have a factor of 11. Therefore, the only value of x that will make $x \cdot 5569$ divisible by 11 is $x=11$. no value of x, other than $x=9$, will make $x \cdot 5569$ divisible by 9 .
$* * * * * * * * * *$
Let's concentrate on the units digit.
$2784 x=x \cdot 5569 \Rightarrow x \cdot 9=* x$
A consideration of the non-zero possibilities shows that $x=5$:

$$
\begin{aligned}
1 \cdot 9 & =9 \\
2 \cdot 9 & =18 \\
3 \cdot 9 & =27 \\
4 \cdot 9 & =36 \\
5 \cdot 9 & =45 \\
6 \cdot 9 & =54 \\
7 \cdot 9 & =63 \\
8 \cdot 9 & =72 \\
9 \cdot 9 & =81
\end{aligned}
$$

Check: $5 \cdot 5569=27845$
Check!
(e) $512 \cdot 1 x 53125=1,000,000,000$
(For future reference, note that $512=2^{9}$. So the only prime factor of 512 is 2 .)
Initially, it appears that neither the "divisibility by 9 criterion" nor the "divisibility by 11 criterion" apply here, as
$9 \nmid(1+0+0+0+0+0+0+0+0+0)$ and
$11 \nmid(0-0+0-0+0-0+0-0+0-1)$.
Perhaps we can manipulate the equation algebraically, so that either the "divisibility by 9 criterion" or the "divisibility by 11 criterion" DOES apply.

Since $9 \nmid(1,000,000,000)$ and $11 \nmid(1,000,000,000)$, we might try to remedy this situation algebraically by adding/subtracting a constant to/from each side of the equation so that the right hand side will be divisible by either 9 or 11 .

Our first attempt might be to subtract 1 from the right-hand side of the equation, which will make the right-hand side equal to $999,999,999$ - a number that is clearly divisible by 9 .

But when we attempt to subtract 1 from the left-hand side of the equation, we have a problem:
$512 \cdot 1 \times 53125-1$ cannot be expressed as a product, so we can't apply the divisibility criteria for 9 and 11 to the left-hand side of the equation.

The lesson that we learn from this is that we must augment/decrement the righthand side of the equation in increments of 512 .

For example:
$512 \cdot 1 x 53125+512=1,000,000,000+512$
$\Leftrightarrow 512 \cdot(1 x 53125+1)=1,000,000,512$
$\Leftrightarrow 512 \cdot 1 x 53126=1,000,000,512$
i.e., each increment/decrement of the factor $1 x 53125$ by 1 on the left-hand side translates into a corresponding increment/decrement of the right-hand side by $1,000,000,000$ by 512 .

Sooooo . . . incrementing both sides in this fashion yields:
$512 \cdot 1 x 53126=1,000,000,512$
The right-hand side is clearly divisible by 9 , as $9 \mid(1+0+0+0+0+0+0+5+1+2)$
Hence, $9|(512 \cdot 1 x 53126) \Rightarrow 9| 1 x 53126$, since $9 \nmid 512$.

$$
\Rightarrow 9|(1+x+5+3+1+2+6) \Rightarrow 9|(x+18) \Rightarrow x=0 \text { or } x=9
$$

The divisibility by 9 criterion proves to be inconclusive.
Sooooo . . . let's increment both sides again. This will yield:
$512 \cdot 1 x 53127=1,000,001,024$
The right-hand side is clearly divisible by 11 , as $11(4-2+0-1+0-0+0-0+0-1)$
Hence, $11|(512 \cdot 1 x 53127) \Rightarrow 11| 1 x 53127$, since $11 \nmid 512$.
$\Rightarrow 11|(7-2+1-3+5-x+1) \Rightarrow 11|(9-x) \Rightarrow x=9$
Check: $512 \cdot 1953125=2^{9} \cdot 5^{9}=(2 \cdot 5)^{9}=1,000,000,000$
Check!
$x=9$.
7. Establish the following divisibility criteria:
(a) An integer is divisible by 2 if and only if its units digit is $0,2,4,6$, or 8 .

Proof. Let N be the integer under consideration, and let x be the units digit of N.

Note that N can be expressed as

$$
N=k \cdot 10+x
$$

where $k \in \mathbf{Z}$, and $x=\{0,1,2,3,4,5,6,7,8,9\}$.
Note that $k \cdot 10 \equiv 0(\bmod 2)$.
Hence, $N \equiv x(\bmod 2)$.
Observe:
$2 \mid N$
$\Leftrightarrow N \equiv 0(\bmod 2)$
$\Leftrightarrow x \equiv 0(\bmod 2)$
$\Leftrightarrow x \in\{0,2,4,6,8\}$.
(b) An integer is divisible by 3 if and only if the sum of its digits is divisible by 3 .
(i.e., if $N=a_{m} a_{m-1} \ldots a_{2} a_{1} a_{0}$, then $3|N \Leftrightarrow 3|\left(a_{m}+a_{m-1}+\ldots+a_{2}+a_{1}+a_{0}\right)$.)

Proof. Define $P(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}$.
Note: Since $10 \equiv 1(\bmod 3)$, it follows that $P(10) \equiv P(1)(\bmod 3)$.
Observe:
$3|N \Leftrightarrow N \equiv 0(\bmod 3) \Leftrightarrow P(10) \equiv 0(\bmod 3) \Leftrightarrow P(1) \equiv 0(\bmod 3) \Leftrightarrow 3| P(1) \Leftrightarrow$ $3 \mid\left(a_{m}+a_{m-1}+\ldots+a_{2}+a_{1}+a_{0}\right)$.
(c) An integer is divisible by 4 if and only if the number formed by its tens and units digits is divisible by 4 .

Proof. Let $N=a_{m} a_{m-1} \ldots a_{2} a_{1} a_{0}$. Note that N can be written as:

$$
N=k \cdot 10^{2}+a_{1} a_{0}
$$

Since $k \cdot 10^{2} \equiv 0(\bmod 4)$, it follows that $N=k \cdot 10^{2}+a_{1} a_{0} \equiv a_{1} a_{0}(\bmod 4)$.
i.e., $N \equiv a_{1} a_{0}(\bmod 4)$.

Observe:
$4 \mid N$
$\Leftrightarrow N \equiv 0(\bmod 4)$
$\Leftrightarrow a_{1} a_{0} \equiv 0(\bmod 4)$
$\Leftrightarrow 4 \mid a_{1} a_{0}$.
(d) An integer is divisible by 5 if and only if its units digit is 0 or 5 .

Proof. Let N be the integer under consideration, and let x be the units digit of N.

Note that N can be expressed as

$$
N=k \cdot 10+x
$$

where $k \in \mathbf{Z}$, and $x=\{0,1,2,3,4,5,6,7,8,9\}$.
Note that $k \cdot 10 \equiv 0(\bmod 5)$.
Hence, $N \equiv x(\bmod 5)$.
Observe:
$5 \mid N$
$\Leftrightarrow N \equiv 0(\bmod 5)$
$\Leftrightarrow x \equiv 0(\bmod 5)$
$\Leftrightarrow x \in\{0,5\}$.

