# MTH 4436 Homework Set 4.3; p. 73 2-7

Summer 2023

Pat Rossi

Name \_\_\_\_

- 2. Prove the following statements:
  - (a) For any integer a, the units digit of  $a^2$  is 0, 1, 4, 5, 6, or 9.

The key observation here, is that the units digit of  $a^2$  is congruent to  $a^2 \pmod{10}$ .

Also, if m is the units digit of n, then  $\exists$  a natural number k, such that n = 10k+m. For example, n = 1295 can be written as

$$n = (10)(129) + 5$$

At any rate, the units digit of  $a^2$  is equal to  $a^2 \pmod{10} \equiv (10k + m)^2 \pmod{10} \equiv m^2 \pmod{10}$ .

There are 10 cases:

| m = | units digit $= m^2 \pmod{10}$ |  |
|-----|-------------------------------|--|
| 0   | 0                             |  |
| 1   | 1                             |  |
| 2   | 4                             |  |
| 3   | 9                             |  |
| 4   | 6                             |  |
| 5   | 5                             |  |
| 6   | 6                             |  |
| 7   | 9                             |  |
| 8   | 4                             |  |
| 9   | 1                             |  |
|     |                               |  |

Thus, the units digit of  $a^2$  is either 0, 1, 4, 5, 6, or 9.

(b) Any one of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 can occur as the units digit of  $a^3$ . The key observation here, is that the units digit of  $a^3$  is congruent to  $a^3 \pmod{10}$ . Also, if m is the units digit of n, then  $\exists$  a natural number k, such that n = 10k+m. The units digit of  $a^3$  is equal to  $a^3 \pmod{10} \equiv (10k+m)^3 \pmod{10} \equiv m^3 \pmod{10}$ . There are 10 cases:

| m = | units digit $= m^3 \pmod{10}$ |
|-----|-------------------------------|
| 0   | 0                             |
| 1   | 1                             |
| 2   | 8                             |
| 3   | 7                             |
| 4   | 4                             |
| 5   | 5                             |
| 6   | 6                             |
| 7   | 3                             |
| 8   | 2                             |
| 9   | 9                             |

Thus, the units digit of  $a^3$  can be any one of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

(c) For any integer a, the units digit of  $a^4$  is 0, 1, 5, or 6.

Again, the key observation here, is that the units digit of  $a^4$  is congruent to  $a^4 \pmod{10}$ .

Also, if m is the units digit of n, then  $\exists$  a natural number k, such that n = 10k+m. The units digit of  $a^4$  is equal to  $a^4 \pmod{10} \equiv (10k+m)^4 \pmod{10} \equiv m^4 \pmod{10}$ . There are 10 cases:

| m = | units digit $= m^4 \pmod{10}$ |
|-----|-------------------------------|
| 0   | 0                             |
| 1   | 1                             |
| 2   | 6                             |
| 3   | 1                             |
| 4   | 6                             |
| 5   | 5                             |
| 6   | 6                             |
| 7   | 1                             |
| 8   | 6                             |
| 9   | 1                             |

Thus, the units digit of  $a^4$  is either 0, 1, 5, or 6.

(d) The units digit of a triangular number is either 0, 1, 3, 5, 6, or 8.

Let  $t_n$  be the  $n^{\text{th}}$  triangular number. As before, the units digit of  $t_n$  is congruent to  $t_n \pmod{10}$ .

By problem 1a, in set 1.1,  $t_n = \frac{n(n+1)}{2}$ . i.e.  $t_n = \frac{n^2+n}{2}$ 

| m | $m^2 \pmod{10}$ | $(m^2 + m) \pmod{10}$ | $\frac{(m^2+m)}{2} \pmod{10}$ |
|---|-----------------|-----------------------|-------------------------------|
| 0 | 0               | 0                     | $0,5^{-1}$                    |
| 1 | 1               | 2                     | 1, 6                          |
| 2 | 4               | 6                     | 3,8                           |
| 3 | 9               | 2                     | 1, 6                          |
| 4 | 6               | 0                     | 0,5                           |
| 5 | 5               | 0                     | 0,5                           |
| 6 | 6               | 2                     | 1, 6                          |
| 7 | 9               | 6                     | 3,8                           |
| 8 | 4               | 2                     | 1, 6                          |
| 9 | 1               | 0                     | 0,5                           |

Thus, the units digit of a triangular number is either 0, 1, 3, 5, 6, or 8.

3. Find the last two digits of the number  $9^{9^9}$ . [Hint:  $9^9 \equiv 9 \pmod{10}$ ; hence,  $9^{9^9} = 9^{9+10k}$ ; now use the fact that  $9^9 \equiv 89 \pmod{100}$ ]

First, let's verify these hints:

 $9^9 \equiv 9 \,(\mathrm{mod}\, 10)$ 

**Observe:**  $9 \equiv -1 \pmod{10}$ 

Hence,  $9^9 \equiv (-1)^9 \pmod{10} \equiv -1 \pmod{10} \equiv 9 \pmod{10}$ 

i.e.,  $9^9 \equiv 9 \pmod{10}$ 

 $9^{9^9} = 9^{9+10k}$ 

**Observe:**  $9^9 \equiv 9 \pmod{10} \Rightarrow 9^9 - 9 = 10k$ , for some  $k \in \mathbb{Z}$ ,  $\Rightarrow 9^9 = 9 + 10k$ , for some  $k \in \mathbb{Z}$ 

i.e.,  $9^9 = 9 + 10k$ 

Hence,  $9^{9^9} = 9^{9+10k}$ 

 $9^9 \equiv 89 \,(\mathrm{mod}\,100)$ 

I don't think that there's a really clever way to do this:

**Observe:** 
$$9^2 = 81 \cdot 9 = 729 \cdot 9 \equiv 29 \cdot 9 = 261 \equiv 61 \cdot 9 = 549$$
  
 $9^3 = 9^2 \cdot 9 = 81 \cdot 9 \equiv (-19) \cdot 9 \pmod{100} \equiv (-171) \pmod{100} \equiv 29 \pmod{100}$   
i.e.  $9^3 \equiv 29 \pmod{100}$   
 $9^6 = (9^3)^2 \equiv (29)^2 \pmod{100} \equiv 841 \pmod{100} \equiv 41 \pmod{100}$   
i.e.,  $9^6 \equiv 41 \pmod{100}$   
 $9^9 = 9^39^6 \equiv (29) (41) \pmod{100} \equiv 1189 \pmod{100} \equiv 89 \pmod{100}$   
i.e.,  $9^9 \equiv 89 \pmod{100}$   
Now . . . Back to our exercise!!!

Find the last two digits of the number  $9^{9^9}$ 

# Observe:

$$9^{9^9} = 9^{9+10k} = 9^9 \cdot 9^{10k} = 9^9 \cdot (9^{10})^k = 9^9 \cdot (9^9 \cdot 9)^k \equiv 9^9 \cdot ((89) (9))^k \pmod{100}$$
$$\equiv 9^9 \cdot ((-11) (9))^k \pmod{100} \equiv 9^9 \cdot ((1))^k \pmod{100} \equiv 9^9 \cdot 1 \pmod{100} \equiv 9^9 \pmod{100}$$
$$\equiv 89 \pmod{100}$$
i.e.,  $9^{9^9} \equiv 89 \pmod{100}$ 

Hence, the last two digits of  $9^{9^9}$  are 89.

4. Without performing the divisions, determine whether the integers 176, 521, 221 and 149, 235, 678 are divisible by 9 or 11.

#### 176, 521, 221

Observe: 1 + 7 + 6 + 5 + 2 + 1 + 2 + 2 + 1 = 27, which is divisible by 9.

Since 9|(1+7+6+5+2+1+2+2+1), 9|176, 521, 221 also.

Note also, that 1 - 2 + 2 - 1 + 2 - 5 + 6 - 7 + 1 = -3, which is NOT divisible by 11.

Since  $11 \nmid (1 - 2 + 2 - 1 + 2 - 5 + 6 - 7 +)$ , it follows that  $11 \nmid 176, 521, 221$ .

# 149,235,678

Observe: 1 + 4 + 9 + 2 + 3 + 5 + 6 + 7 + 8 = 45, which is divisible by 9.

Since 9|(1+4+9+2+3+5+6+7+8), 9|149, 235, 678 also.

Note also, that 8 - 7 + 6 - 5 + 3 - 2 + 9 - 4 + 1 = 9 which is NOT divisible by 11.

Since  $11 \nmid (8 - 7 + 6 - 5 + 3 - 2 + 9 - 4 + 1)$ , it follows that  $11 \nmid 176, 521, 221$ .

(a) Obtain the following generalization of Theorem 4.5: If the integer  $\mathbf{N}$  is represented in base b by

$$\mathbf{N} = a_m b^m + a_{m-1} b^{m-1} + \ldots + a_2 b^2 + a_1 b^1 + a_0 \qquad 0 \le a_k \le b - 1$$

Then (b-1) |**N** if and only if (b-1) |S, where  $S = (a_m + a_{m-1} + \ldots + a_2 + a_1 + a_0)$ . **Proof.** Consider the polynomial with integer coefficients,  $P(x) = \sum_{k=0}^{m} a_k x^k$ .

Observe:  $b \equiv 1 \pmod{(b-1)}$ .

Hence,  $P(b) \equiv P(1) \pmod{(b-1)}$ .

But here's the catch:

$$P(b) = a_m b^m + a_{k-1} b^{m-1} + \ldots + a_2 b^2 + a_1 b^1 + a_0 b^0$$
  
= N

and

$$P(1) = a_m (1)^m + a_{m-1} (1)^{m-1} + \ldots + a_2 (1)^2 + a_1 (1)^1 + a_0 (1)^0$$
  
=  $a_m + a_{m-1} + \ldots + a_2 + a_1 + a_0$   
=  $S$ 

Now suppose that (b-1)|N.

Since, N = P(b), this is true if and only if (b-1) | P(b).

 $\Leftrightarrow P(b) \equiv 0 \pmod{(b-1)}.$ 

Since,  $P(b) \equiv P(1) \pmod{(b-1)}$ , this is true if and only if  $P(1) \equiv 0 \pmod{(b-1)}$ ,

Which, in turn, is true if and only if (b-1)|P(1),

and this is true if and only if 9|S.

(b) Give criteria for the divisibility of N by 3 and 8 that depend on the digits of N when written in base 9.

```
\boxed{3}
Given that \mathbf{N} = a_m 9^m + a_{m-1} 9^{m-1} + \ldots + a_2 9^2 + a_1 9^1 + a_0,

observe that (a_m 9^m + a_{m-1} 9^{m-1} + \ldots + a_2 9^2 + a_1 9^1) \equiv 0 \pmod{3}.

Hence, \mathbf{N} = (a_m 9^m + a_{m-1} 9^{m-1} + \ldots + a_2 9^2 + a_1 9^1 + a_0) \equiv a_0 \pmod{3}.

i.e., \mathbf{N} \equiv a_0 \pmod{3}.
```

#### **Observe:**

 $3|N \Leftrightarrow \mathbf{N} \equiv 0 \pmod{3} \Leftrightarrow a_0 \equiv 0 \pmod{3} \Leftrightarrow 3|a_0.$ 

Hence, 3|N if and only if  $3|a_0$ .

#### 8

If we let b = 9, then (b - 1) = 8.

By part a, If the integer N is represented in base 9 by

$$\mathbf{N} = a_m 9^m + a_{m-1} 9^{m-1} + \ldots + a_2 9^2 + a_1 9^1 + a_0 \qquad 0 \le a_k \le 8$$

Then 8|N if and only if 8|  $(a_m + a_{m-1} + \ldots + a_2 + a_1 + a_0)$ .

(c) Is the number  $(447836)_9$  divisible by 3 and 8?

 $a_0 = 6.$ 

Since  $3|a_0$ , it follows that  $3|(447836)_9$ 

# 8

Observe:  $4 + 4 + 7 + 8 + 3 + 6 = 32_{10}$ 

Since  $8|32_{10}$  it follows that  $8|(447836)_9$ 

6. Working modulo 9 or 11, find the missing digits in the calculations below:

(a)  $51840 \cdot 273581 = 1418243x040$ .

**Observe:** 9|(5+1+8+4+0), hence, 9|(51840).

Since  $51840 \cdot 273581 = 1418243x040$ , it follows that 9|(1418243x040).

Hence,  $9|(1+4+1+8+2+4+3+x+0+4+0) \Rightarrow 9|(27+x) \Rightarrow 9|x$ 

 $\Rightarrow$  either x = 0 or x = 9

Unfortunately, in this case, the "divisibility by 9 criterion" turns out to be inconclusive.

OK, so let's try using the "divisibility by 11 criterion."

**Observe:** 11|(1-8+5-3+7-2), hence 11|273581.

Since  $51840 \cdot 273581 = 1418243x040$  and 11 divides a factor of the Left Hand side of the equation, it follows that 11 divides the Right Hand side of the equation.

i.e., 11|(1418243x040).

Hence,  $11|(0 - 4 + 0 - x + 3 - 4 + 2 - 8 + 1 - 4 + 1) \Rightarrow 11|(-13 - x) \Rightarrow 11|(13 + x) \Rightarrow x = 9$ 

(b) 
$$2x99561 = [3(523 + x)]^2$$
.

**Observe:**  $2x99561 = [3(523 + x)]^2 = 9(523 + x)^2$ 

The point of this observation is that 9|2x99561.

Hence,  $9|(2+x+9+9+5+6+1) \Rightarrow 9|(32+x) \Rightarrow x = 4.$ 

Let's check:  $[3(523+4)]^2 = 1581^2 = 2499561.$ 

Check!

(c)  $2784x = x \cdot 5569$ 

At first glance, it appears that we won't be able to "find the missing digit, working modulo 9 or 11."

If we try applying the "divisibility by 9 criterion," we see that, in order for 2784x to be divisible by 9, x must be equal to 6. However, since (5+5+6+9) = 25, no value of x, other than x = 9, will make  $x \cdot 5569$  divisible by 9.

If we try applying the "divisibility by 11 criterion" to the right hand side of the equation:

 $x \cdot 5569$ 

we see that, (9 - 6 + 5 - 5) = 3.

Hence, 5569 does not have a factor of 11. Therefore, the only value of x that will make  $x \cdot 5569$  divisible by 11 is x = 11.

Since, from the context of this exercise (see the left hand side of the equation), x is a digit, the conclusion that x = 11 is an impossibility.

Thus, the "divisibility by 11 criterion" does not seem to be applicable either.

(d) in order for 2784x to be divisible by 11,  $11(x-4+8-7+2) \Rightarrow x=1$ .

However, since (9 - 6 + 5 - 5) = 3, it follows that 5569 does not have a factor of 11. Therefore, the only value of x that will make  $x \cdot 5569$  divisible by 11 is x = 11. no value of x, other than x = 9, will make  $x \cdot 5569$  divisible by 9.

\*\*\*\*\*\*\*

Let's concentrate on the units digit.

 $2784x = x \cdot 5569 \Rightarrow x \cdot 9 = *x$ 

A consideration of the non-zero possibilities shows that x = 5:

 $1 \cdot 9$ 9 =  $2 \cdot 9$ 18= $3 \cdot 9$ 27=36  $4 \cdot 9$ = $5 \cdot 9$ = 45 $6 \cdot 9$ = 54 $7 \cdot 9$ = 63  $8 \cdot 9$ 72=  $9 \cdot 9$ = 81 Check:  $5 \cdot 5569 = 27845$ 

Check!

(e)  $512 \cdot 1x53125 = 1,000,000,000$ 

(For future reference, note that  $512 = 2^9$ . So the only prime factor of 512 is 2.)

Initially, it appears that neither the "divisibility by 9 criterion" nor the "divisibility by 11 criterion" apply here, as

$$9 \nmid (1+0+0+0+0+0+0+0+0+0+0)$$
 and

 $11 \neq (0 - 0 + 0 - 0 + 0 - 0 + 0 - 0 + 0 - 1).$ 

Perhaps we can manipulate the equation algebraically, so that either the "divisibility by 9 criterion" or the "divisibility by 11 criterion" DOES apply.

Since  $9 \nmid (1,000,000,000)$  and  $11 \nmid (1,000,000,000)$ , we might try to remedy this situation algebraically by adding/subtracting a constant to/from each side of the equation so that the right will be divisible by either 9 or 11.

Our first attempt might be to subtract 1 from the right-hand side of the equation, which will make the right-hand side equal to 999,999,999 – a number that is clearly divisible by 9.

But when we attempt to subtract 1 from the left-hand side of the equation, we have a problem:

 $512 \cdot 1x53125 - 1$  cannot be expressed as a product, so we can't apply the divisibility criteria for 9 and 11 to the left-hand side of the equation.

The lesson that we learn from this is that we must augment/decrement the righthand side of the equation in increments of 512.

For example:

 $512 \cdot 1x53125 + 512 = 1,000,000,000 + 512$   $\Leftrightarrow 512 \cdot (1x53125 + 1) = 1,000,000,512$  $\Leftrightarrow 512 \cdot 1x53126 = 1,000,000,512$ 

i.e., each increment/decrement of the factor 1x53125 by 1 on the left-hand side translates into a corresponding increment/decrement of the right-hand side by 1,000,000,000 by 512.

Sooooo . . . incrementing both sides in this fashion yields:

 $512 \cdot 1x53126 = 1,000,000,512$ 

The right-hand side is clearly divisible by 9, as 9|(1+0+0+0+0+0+0+5+1+2)|

Hence,  $9|(512 \cdot 1x53126) \Rightarrow 9|1x53126$ , since  $9 \nmid 512$ .

 $\Rightarrow 9|(1+x+5+3+1+2+6) \Rightarrow 9|(x+18) \Rightarrow x = 0 \text{ or } x = 9.$ 

The divisibility by 9 criterion proves to be inconclusive.



Sooooo . . . let's increment both sides again. This will yield:

 $512 \cdot 1x53127 = 1,000,001,024$ 

The right-hand side is clearly divisible by 11, as 11|(4-2+0-1+0-0+0-0+0-1)Hence,  $11|(512 \cdot 1x53127) \Rightarrow 11|1x53127$ , since  $11 \nmid 512$ .  $\Rightarrow 11|(7-2+1-3+5-x+1) \Rightarrow 11|(9-x) \Rightarrow x = 9$ Check:  $512 \cdot 1953125 = 2^9 \cdot 5^9 = (2 \cdot 5)^9 = 1,000,000,000$ Check!

x = 9.

- 7. Establish the following divisibility criteria:
  - (a) An integer is divisible by 2 if and only if its units digit is 0, 2, 4, 6, or 8.

**Proof.** Let N be the integer under consideration, and let x be the units digit of N.

Note that N can be expressed as

$$N = k \cdot 10 + x$$

where  $k \in \mathbb{Z}$ , and  $x = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ .

Note that  $k \cdot 10 \equiv 0 \pmod{2}$ .

Hence,  $N \equiv x \pmod{2}$ .

Observe:

$$2|N$$
  

$$\Leftrightarrow N \equiv 0 \pmod{2}$$
  

$$\Leftrightarrow x \equiv 0 \pmod{2}$$
  

$$\Leftrightarrow x \in \{0, 2, 4, 6, 8\}. \blacksquare$$

(b) An integer is divisible by 3 if and only if the sum of its digits is divisible by 3.

(i.e., if  $N = a_m a_{m-1} \dots a_2 a_1 a_0$ , then  $3|N \Leftrightarrow 3| (a_m + a_{m-1} + \dots + a_2 + a_1 + a_0)$ .) **Proof.** Define  $P(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_2 x^2 + a_1 x + a_0$ .

Note: Since  $10 \equiv 1 \pmod{3}$ , it follows that  $P(10) \equiv P(1) \pmod{3}$ .

Observe:

 $3|N \Leftrightarrow N \equiv 0 \pmod{3} \Leftrightarrow P(10) \equiv 0 \pmod{3} \Leftrightarrow P(1) \equiv 0 \pmod{3} \Leftrightarrow P(1) \equiv 0 \pmod{3} \Leftrightarrow 3|P(1) \Leftrightarrow 3|(a_m + a_{m-1} + \ldots + a_2 + a_1 + a_0). \blacksquare$ 

(c) An integer is divisible by 4 if and only if the number formed by its tens and units digits is divisible by 4.

**Proof.** Let  $N = a_m a_{m-1} \dots a_2 a_1 a_0$ . Note that N can be written as:

$$N = k \cdot 10^2 + a_1 a_0.$$

Since  $k \cdot 10^2 \equiv 0 \pmod{4}$ , it follows that  $N = k \cdot 10^2 + a_1 a_0 \equiv a_1 a_0 \pmod{4}$ .

i.e.,  $N \equiv a_1 a_0 \pmod{4}$ .

Observe:

4|N $\Leftrightarrow N \equiv 0 \pmod{4}$ 

 $\Leftrightarrow a_1 a_0 \equiv 0 \pmod{4}$ 

 $\Leftrightarrow 4 | a_1 a_0. \blacksquare$ 

(d) An integer is divisible by 5 if and only if its units digit is 0 or 5.

**Proof.** Let N be the integer under consideration, and let x be the units digit of N.

Note that N can be expressed as

$$N = k \cdot 10 + x$$

where  $k \in \mathbb{Z}$ , and  $x = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ .

Note that  $k \cdot 10 \equiv 0 \pmod{5}$ .

Hence,  $N \equiv x \pmod{5}$ .

Observe:

5|N

 $\Leftrightarrow N \equiv 0 \,(\mathrm{mod}\,5)$ 

 $\Leftrightarrow x \equiv 0 \,(\mathrm{mod}\,5)$ 

 $\Leftrightarrow x \in \{0,5\} \,. \blacksquare$