Number Theory - Test \#1 - Solutions

Summer 2023

Pat Rossi
Name \qquad

Instructions

Show CLEARLY how you arrive at you answers.
You can look in your text for reference (Statements of theorems, definitions, etc.)
Do not search the internet, or consult with others, for solutions (other than, perhaps, my own website)

Due June 20, 2023 at 1pm

1. State the Well Ordering Principle

Every non-empty set of non-negative integers (natural numbers) has a least (smallest) element.

Alternativley, let S be a non-empty set of non-negative integers (natural numbers). Then $\exists x \in S$ such that $\forall s \in S, x \leq s$.
2. State the First Principle of Mathematical Induction (First Principle of Finite Induction)

Let S be a set of positive integers having the following properties:
(a) The integer $1 \in S$
(b) Whenever $k \in S, k+1 \in S$ also.

Then $S=\mathbb{N}$
3. State the Binomial Theorem

For any real numbers a and b, and any natural number n, the following holds:

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{n-i} b^{i}
$$

Or equivalently:
For any real numbers a and b, and any natural number n, the following holds:

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}
$$

4. State Pascal's Rule
$\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k} ;$ for $1 \leq k \leq n$
5. State the Division Algorithm

Given integers a and b, with $b>0$, there exist unique integers q and r such that

$$
a=q b+r \quad \text { with } 0 \leq r<b .
$$

q is called the quotient and r is called the remainder.
6. Define greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$

Let a and b be integers, with at least one of them not equal to zero. The greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$, is the positive integer d satisfying the following:
(a) $d \mid a$ and $d \mid b$
(b) If $c \mid a$ and $c \mid b$, then $c \leq d$.

7. State Divisibility Theorem 1

Suppose that integers a, b, c are such that $a \mid c$ and $b \mid c$ and such that $\operatorname{gcd}(a, b)=1$. Then $(a b) \mid c$.

8. State Divisibility Theorem 2 (Euclid's Lemma)

Suppose that integers a, b, c, are such that $a \mid b c$ and such that $\operatorname{gcd}(a, b)=1$. Then $a \mid c$.

9. Define relatively prime

Let a and b be integers, with at least one of them not equal to zero. Then a and b are said to be relatively prime exactly when $\operatorname{gcd}(a, b)=1$.

Alternatively, a and b are said to be relatively prime exactly when a and b have no common divisors larger than 1.
10. State Theorem 2.2 (from our text)

For integers a, b, c, d, the following hold:
(a) $a|0,1| a, a \mid a$
(b) $a \mid 1 \Leftrightarrow a= \pm 1$
(c) If $a \mid b$ and $c \mid d$, Then $a c \mid b d$
(d) If $a \mid b$ and $b \mid c$, then $a \mid c$
(e) $a \mid b$ and $b \mid a \Leftrightarrow a= \pm b$
(f) If $a \mid b$ and $b \neq 0$, then $|a| \leq|b|$
(g) If $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for all $x, y \in \mathbf{N}$
11. Prove by Induction: $1+5+9+\ldots+(4 n-3)=2 n^{2}-n$ i.e., $\underbrace{\sum_{i=1}^{n}(4 i-3)=2 n^{2}-n}_{P(n)}$

Proof.

Show $P(n)$ is true for $n=1$
$\sum_{i=1}^{1}(4 i-3)=4(1)-3=1=2(1)^{2}-$
i.e., $\sum_{i=1}^{1}(4 i-3)=2(1)^{2}$

Assume $P(n)$ is true for $n=k$; show $P(n)$ is true for $n=k+1$
i.e., Assume that $\underbrace{\sum_{i=1}^{k}(4 i-3)=2 k^{2}-k}$ is true, and show that this implies that (induction hypothesis)
$\sum_{i=1}^{k+1}(4 i-3)=2(k+1)^{2}-(k+1) \quad$ is true.
(i.e., show that $\sum_{i=1}^{k+1}(4 i-3)=(k+1)(2 k+1)$ is true.)

Observe: $\sum_{i=1}^{k+1}(4 i-3)=\left(\sum_{i=1}^{k}(4 i-3)\right)+((4(k+1)-3))=\left(2 k^{2}-k\right)+((4(k+1)-3))$
by induction hypothesis
$=\left(2 k^{2}+3 k+1\right)=(k+1)(2 k+1)$.
i.e., $\sum_{i=1}^{k+1} i=(k+1)(2 k+1)$.

Thus, $\sum_{i=1}^{n}(4 i-3)=2 n^{2}-n$ for all natural numbers, n.
12. Prove by Induction: $2 \cdot 6 \cdot 10 \cdot 14 \cdot \ldots \cdot(4 n-2)=\frac{(2 n) \text { ! }}{n!}$
i.e., $\prod_{i=1}^{n}(4 i-2)=\frac{(2 n)!}{n!}$

Proof.

$$
\text { Show true for } n=1
$$

$\prod_{i=1}^{1}(4 i-2)=(4(1)-2)=2=\frac{2}{1}=\frac{(2(1))!}{(1)!}$
i.e., $\prod_{i=1}^{1}(4 i-2)=\frac{(2(1))!}{(1)!}$

Assume true for $n=k$; show true for $n=k+1$
i.e., Assume that $\underbrace{\prod_{i=1}^{k}(4 i-2)=\frac{(2 k)!}{k!}}$ is true, and show that this implies that (induction hypothesis)
$\prod_{i=1}^{k+1}(4 i-2)=\frac{[2(k+1)]!}{(k+1)!} \quad$ is true.

Observe: $\prod_{i=1}^{k+1}(4 i-2)=\left(\prod_{i=1}^{k}(4 i-2)\right)[4(k+1)-2]=\frac{(2 k)!}{k!}[4(k+1)-2]=\frac{(2 k)!}{k!}[4 k+2]$
§ induction hypothesis

$$
\begin{aligned}
& =\frac{2(2 k+1)(2 k)!}{k!}=\frac{(k+1)}{(k+1)} \frac{2(2 k+1)(2 k)!}{k!}=\frac{(2 k+2)(2 k+1)(2 k)!}{(k+1) k!}=\frac{(2 k+2)!}{(k+1)!} \\
& =\frac{[2(k+1))!}{(k+1)!} .
\end{aligned}
$$

i.e., $\prod_{i=1}^{k+1}(4 i-2)=\frac{(2 k+2)!}{(k+1)!}$.

Thus, $\prod_{i=1}^{n}(4 i-2)=\frac{(2 n)!}{n!}$ for all natural numbers, n.
13. Prove: $\binom{n}{0} 3^{n}-\binom{n}{1} 3^{n-1}+\binom{n}{2} 3^{n-2}-\binom{n}{3} 3^{n-3}+\ldots+(-1)^{n}=2^{n}$

Proof.
Observe: $2^{n}=(3+(-1))^{n}=\sum_{i=0}^{n}\binom{n}{i} 3^{n-i}(-1)^{i}$

$$
=\binom{n}{0} 3^{n}-\binom{n}{1} 3^{n-1}+\binom{n}{2} 3^{n-2}-\binom{n}{3} 3^{n-3}+\ldots+(-1)^{n}
$$

14. Show, algebraically and with "dot diagrams," that $2 o_{n}+2 s_{n}=o_{2 n}$

Algebraically: $2 o_{n}+2 s_{n}=2 n(n+1)+2 n^{2}=2 n[(n+1)+n]=2 n(2 n+1)=o_{2 n}$ i.e., $2 o_{n}+2 s_{n}=o_{2 n}$

Using "dot diagrams:"

$(2 n+1)$ columns
The entire array of dots, 2 n rows and $(2 \mathrm{n}+1)$ columns, constitutes $\mathrm{o}_{2 \mathrm{n}}$
15. Show, algebraically and with "dot diagrams," that $o_{n}+o_{n+1}+2 s_{n+1}=s_{2 n+2}$

Algebraically: $o_{n}+o_{n+1}+2 s_{n+1}=n(n+1)+(n+1)[(n+1)+1]+2(n+1)^{2}$

$$
\begin{aligned}
& =n(n+1)+(n+1)(n+2)+2(n+1)^{2}=(n+1)[n+(n+2)]+2(n+1)^{2} \\
& =(n+1)(2 n+2)+2(n+1)^{2}=(n+1) 2(n+1)+2(n+1)^{2}=2(n+1)^{2}+2(n+1)^{2} \\
& =4(n+1)^{2}=2^{2}(n+1)^{2}=[2(n+1)]^{2}=(2 n+2)^{2}=s_{2 n+2} \\
& \text { i.e., } o_{n}+o_{n+1}+2 s_{n+1}=s_{2 n+2}
\end{aligned}
$$

Using "dot diagrams:"

The entire array of dots, $(2 n+2)$ rows and $(2 n+2)$ columns, constitutes $\mathrm{S}_{2 \mathrm{n}+2}$
16. Prove that the cube of a natural number cannot be of the form $4 n+2$

Let m be an integer. By the Division Algorithm, either:

$$
\begin{aligned}
& m=4 k \\
& m=4 k+1 \\
& m=4 k+2 \\
& m=4 k+3
\end{aligned}
$$

Observe:

If $m=4 k$, then: $m^{3}=(4 k)^{3}=64 k^{3}=4\left(16 k^{3}\right)=4 n$, where $n=16 k^{3}$

If $m=4 k+1$, then:

$$
\begin{aligned}
m^{3} & =(4 k+1)^{3}=64 k^{3}+48 k^{2}+12 k+1=4\left(16 k^{3}+12 k^{2}+3 k\right)+1 \\
& =4 n+1, \text { where } n=16 k^{3}+12 k^{2}+3 k
\end{aligned}
$$

If $m=4 k+2$, then:
$m^{3}=(4 k+2)^{3}=64 k^{3}+96 k^{2}+48 k+8=4\left(16 k^{3}+24 k^{2}+12 k+2\right)=4 n$,
where $n=16 k^{3}+24 k^{2}+12 k+2$
If $m=4 k+3$, then:

$$
\begin{aligned}
m^{3} & =(4 k+3)^{3}=64 k^{3}+144 k^{2}+108 k+27=\left(64 k^{3}+144 k^{2}+108 k+24\right)+3 \\
& =4\left(16 k^{3}+36 k^{2}+27 k+6\right)+3=4 n+3, \text { where } n=16 k^{3}+36 k^{2}+27 k+6
\end{aligned}
$$

i.e., for any integer m, m^{3} cannot be of the form: $4 n+2$
17. Prove that for any integer $a, \operatorname{gcd}(5 a+2,7 a+3)=1$

Proof.

Recall that if $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for all $x, y \in \mathbf{N}$
i.e., a divides any linear combination of b and c)

Therefore, since $d \mid(5 a+2)$ and $d \mid(7 a+3), d$ divides any linear combination of $(5 a+2)$ and $d \mid(7 a+3)$

Specifically, d divides $7(5 a+2)-5(7 a+3)=-1$
i.e., $d \mid(-1) \Rightarrow d= \pm 1$

Since d must be positive, $d=1$

