
Number Theory - Test #1 - Solutions
Summer 2023

Pat Rossi Name

Instructions

Show CLEARLY how you arrive at you answers.

You can look in your text for reference (Statements of theorems, definitions, etc.)

Do not search the internet, or consult with others, for solutions (other than, perhaps, my
own website)

Due June 20, 2023 at 1pm

1. State theWell Ordering Principle

Every non-empty set of non-negative integers (natural numbers) has a least (smallest)
element.

Alternativley, let S be a non-empty set of non-negative integers (natural numbers).
Then ∃ x ∈ S such that ∀s ∈ S, x ≤ s.

2. State the First Principle of Mathematical Induction (First Principle of Finite
Induction)

Let S be a set of positive integers having the following properties:

(a) The integer 1 ∈ S

(b) Whenever k ∈ S, k + 1 ∈ S also.

Then S = N

3. State the Binomial Theorem

For any real numbers a and b, and any natural number n, the following holds:

(a+ b)n =

n∑
i=0

(
n

i

)
an−ibi

Or equivalently:

For any real numbers a and b, and any natural number n, the following holds:

(a+ b)n =

n∑
i=0

(
n

i

)
aibn−i



4. State Pascal’s Rule(
n
k

)
+
(
n
k−1
)
=
(
n+1
k

)
; for 1 ≤ k ≤ n

5. State the Division Algorithm

Given integers a and b,with b > 0, there exist unique integers q and r such that

a = qb+ r with 0 ≤ r < b.

q is called the quotient and r is called the remainder.

6. Define greatest common divisor of a and b, denoted gcd (a, b)

Let a and b be integers, with at least one of them not equal to zero. The greatest
common divisor of a and b, denoted gcd (a, b) , is the positive integer d satisfying the
following:

(a) d|a and d|b

(b) If c|a and c|b, then c ≤ d.

7. State Divisibility Theorem 1

Suppose that integers a, b, c are such that a|c and b|c and such that gcd (a, b) = 1. Then
(ab) |c.

8. State Divisibility Theorem 2 (Euclid’s Lemma)

Suppose that integers a, b, c, are such that a|bc and such that gcd (a, b) = 1. Then a|c.

9. Define relatively prime

Let a and b be integers, with at least one of them not equal to zero. Then a and b are
said to be relatively prime exactly when gcd (a, b) = 1.

Alternatively, a and b are said to be relatively prime exactly when a and b have no
common divisors larger than 1.
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10. State Theorem 2.2 (from our text)

For integersa, b, c, d, the following hold:

(a) a|0, 1|a, a|a

(b) a|1⇔ a = ±1

(c) If a|b and c|d, Then ac|bd

(d) If a|b and b|c, then a|c

(e) a|b and b|a⇔ a = ±b

(f) If a|b and b 6= 0, then |a| ≤ |b|

(g) If a|b and a|c, then a| (bx+ cy) for all x, y ∈ N
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11. Prove by Induction: 1 + 5 + 9 + . . .+ (4n− 3) = 2n2 − n

i.e.,
n∑
i=1

(4i− 3) = 2n2 − n︸ ︷︷ ︸
P (n)

Proof.

Show P (n) is true for n = 1

1∑
i=1

(4i− 3) = 4 (1)− 3 = 1 = 2 (1)2 − (1)

i.e.,
1∑
i=1

(4i− 3) = 2 (1)2 − (1)

Assume P (n) is true for n = k; show P (n) is true for n = k + 1

i.e., Assume that
k∑
i=1

(4i− 3) = 2k2 − k︸ ︷︷ ︸
(induction hypothesis)

is true, and show that this implies that

∑k+1
i=1 (4i− 3) = 2 (k + 1)

2 − (k + 1) is true.

(i.e., show that
∑k+1

i=1 (4i− 3) = (k + 1) (2k + 1) is true.)

Observe:
∑k+1

i=1 (4i− 3) =
(∑k

i=1 (4i− 3)
)
+ ((4 (k + 1)− 3)) = (2k2 − k) + ((4 (k + 1)− 3))

↖ ↗
by induction hypothesis

= (2k2 + 3k + 1) = (k + 1) (2k + 1) .

i.e.,
∑k+1

i=1 i = (k + 1) (2k + 1) .

Thus,
∑n

i=1 (4i− 3) = 2n2 − n for all natural numbers, n.
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12. Prove by Induction: 2 · 6 · 10 · 14 · . . . · (4n− 2) = (2n)!
n!

i.e.,
n∏
i=1

(4i− 2) = (2n)!
n!

Proof.

Show true for n = 1

1∏
i=1

(4i− 2) = (4 (1)− 2) = 2 = 2
1
= (2(1))!

(1)!

i.e.,
1∏
i=1

(4i− 2) = (2(1))!
(1)!

Assume true for n = k; show true for n = k + 1

i.e., Assume that
k∏
i=1

(4i− 2) = (2k)!

k!︸ ︷︷ ︸
(induction hypothesis)

is true, and show that this implies that

k+1∏
i=1

(4i− 2) = [2(k+1)]!
(k+1)!

is true.

Observe:
k+1∏
i=1

(4i− 2) =
(

k∏
i=1

(4i− 2)
)
[4 (k + 1)− 2] = (2k)!

k!
[4 (k + 1)− 2]

↖ ↗
by induction hypothesis

= (2k)!
k!
[4k + 2]

= 2(2k+1)(2k)!
k!

= (k+1)
(k+1)

2(2k+1)(2k)!
k!

= (2k+2)(2k+1)(2k)!
(k+1)k!

= (2k+2)!
(k+1)!

= [2(k+1)]!
(k+1)!

.

i.e.,
k+1∏
i=1

(4i− 2) = (2k+2)!
(k+1)!

.

Thus,
n∏
i=1

(4i− 2) = (2n)!
n!

for all natural numbers, n.
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13. Prove:
(
n
0

)
3n −

(
n
1

)
3n−1 +

(
n
2

)
3n−2 −

(
n
3

)
3n−3 + . . .+ (−1)n = 2n

Proof.

Observe: 2n = (3 + (−1))n =
∑n

i=0

(
n
i

)
3n−i (−1)i

=
(
n
0

)
3n −

(
n
1

)
3n−1 +

(
n
2

)
3n−2 −

(
n
3

)
3n−3 + . . .+ (−1)n

14. Show, algebraically and with “dot diagrams,”that 2on + 2sn = o2n

Algebraically: 2on + 2sn = 2n (n+ 1) + 2n2 = 2n [(n+ 1) + n] = 2n (2n+ 1) = o2n

i.e., 2on + 2sn = o2n

Using “dot diagrams:”

n columns (n + 1) columns

(2n + 1) columns

n rows

n rows

2n rows

The entire array of dots, 2n rows and (2n + 1) columns, constitutes o2n

sn

sn

on

on
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15. Show, algebraically and with “dot diagrams,”that on + on+1 + 2sn+1 = s2n+2

Algebraically: on + on+1 + 2sn+1 = n (n+ 1) + (n+ 1) [(n+ 1) + 1] + 2 (n+ 1)
2

= n (n+ 1) + (n+ 1) (n+ 2) + 2 (n+ 1)2 = (n+ 1) [n+ (n+ 2)] + 2 (n+ 1)2

= (n+ 1) (2n+ 2)+2 (n+ 1)2 = (n+ 1) 2 (n+ 1)+2 (n+ 1)2 = 2 (n+ 1)2+2 (n+ 1)2

= 4 (n+ 1)2 = 22 (n+ 1)2 = [2 (n+ 1)]2 = (2n+ 2)2 = s2n+2

i.e., on + on+1 + 2sn+1 = s2n+2

Using “dot diagrams:”

n rows

(n + 1) columns (n + 1) columns

(n + 2) rows

(2n + 2) columns

(2n + 2) rows

(n + 1) rows

(n + 1) rows

(2n + 2) columns
on

on + 1 sn + 1

sn + 1

The entire array of dots, (2n + 2) rows and (2n + 2) columns, constitutes s2n + 2
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16. Prove that the cube of a natural number cannot be of the form 4n+ 2

Let m be an integer. By the Division Algorithm, either:

m = 4k
m = 4k + 1
m = 4k + 2
m = 4k + 3

Observe:

If m = 4k, then:

m3 = (4k)3 = 64k3 = 4 (16k3) = 4n, where n = 16k3

If m = 4k + 1, then:

m3 = (4k + 1)3 = 64k3 + 48k2 + 12k + 1 = 4 (16k3 + 12k2 + 3k) + 1

= 4n+ 1, where n = 16k3 + 12k2 + 3k

If m = 4k + 2, then:

m3 = (4k + 2)3 = 64k3 + 96k2 + 48k + 8 = 4 (16k3 + 24k2 + 12k + 2) = 4n,

where n = 16k3 + 24k2 + 12k + 2

If m = 4k + 3, then:

m3 = (4k + 3)3 = 64k3 + 144k2 + 108k + 27 = (64k3 + 144k2 + 108k + 24) + 3

= 4 (16k3 + 36k2 + 27k + 6) + 3 = 4n+ 3, where n = 16k3 + 36k2 + 27k + 6

i.e., for any integer m, m3 cannot be of the form: 4n+ 2
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17. Prove that for any integer a, gcd (5a+ 2, 7a+ 3) = 1

Proof.

Recall that if a|b and a|c, then a| (bx+ cy) for all x, y ∈ N

i.e., a divides any linear combination of b and c)

Therefore, since d| (5a+ 2) and d| (7a+ 3) , d divides any linear combination of (5a+ 2)
and d| (7a+ 3)

Specifically, d divides 7 (5a+ 2)− 5 (7a+ 3) = −1

i.e., d| (−1)⇒ d = ±1

Since d must be positive, d = 1
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