Homework - Sec. 2.3, Page 24

Fall 2016
Pat Rossi
Name \qquad

1. If $a \mid b$, show that $(-a)|b, a|(-b)$, and $(-a) \mid(-b)$.

Let the hypothesis be given (i.e., suppose that $a \mid b$).
Then \exists an integer m such that $b=a m$.
$\Rightarrow b=(-a)(-m) \Rightarrow(-a) \mid b$.
Also, the fact that $b=a m$ implies that $(-b)=a(-m)$, hence, $a \mid(-b)$.
Finally, the fact that $b=a m$ implies that $(-b)=(-a)(m)$, hence, $(-a) \mid(-b)$.
2. Given integers a, b, c, d, verify the following:
(a) If $a \mid b$. then $a \mid b c$.

Let the hypothesis be given (i.e., suppose that $a \mid b$).
Then \exists an integer m such that $b=a m$.
$\Rightarrow b c=(a m) c=a(m c)$
i.e., $b c=a(m c)$.

Hence, $a \mid b c$.
(b) If $a \mid b$ and $a \mid c$, then $a^{2} \mid b c$.

Let the hypothesis be given (i.e., suppose that $a \mid b$ and $a \mid c$).
Then \exists an integer(s) m and n such that $b=a m$ and $c=a n$.
Then $b c=(a m)(a n)=a^{2}(m n)$.
i.e., $b c=a^{2}(m n)$, and hence, $a^{2} \mid b c$.
(c) $a \mid b$ if and only if $a c \mid b c$, where $c \neq 0$.
$a|b \Rightarrow a c| b c$
Suppose that $a \mid b$. Then \exists an integer m such that $b=a m$.
Observe: $b c=(a m) c=(a c) m$
i.e., $b c=(a c) m$, and hence, $a c \mid b c$.
$a c|b c \Rightarrow a| b$
Suppose that $a c \mid b c$. Then \exists an integer m such that $b c=(a c) m$.
$\Rightarrow b c=(a m) c$.
Since $c \neq 0$, we can divide both sides by zero.
$\Rightarrow b=a m$.
Hence, $a \mid b$.
(d) If $a \mid b$ and $c \mid d$, then $a c \mid b d$

Let the hypothesis be given (i.e., suppose that $a \mid b$ and $c \mid d$).
Then \exists an integer(s) m and n such that $b=a m$ and $d=c n$.
Then $b d=(a m)(c n)=(a c)(m n)$.
i.e., $b d=(a c)(m n)$, and hence, $a c \mid b d$.
3. Prove or disprove: If $a \mid(b+c)$, then either $a \mid b$ or $a \mid c$.

This is false. To show that it's false, we need to offer a counterexample.
Consider: $a=2, b=3$, and $c=5$.
$a \mid(b+c)$, but $a \nmid b$ and $a \nmid c$.
5. Prove that for any integer a, one of the integers, $a, a+2, a+4$ is divisible by 3 .

Let a be any integer. Then by the division algorithm, there are exactly three mutually exclusive and mutually exhaustive possibilities - either $a=3 k, a=3 k+1$, or $a=$ $3 k+2$.

$$
\text { Case 1: } a=3 k
$$

If $a=3 k$, then our assertion is proved.
Case 2: $a=3 k+1$
If $a=3 k+1$, then $a+2=(3 k+1)+2=3 k+3=3(k+1)$
i.e., $a+2=3(k+1)$. Hence, $3 \mid(a+2)$

Case 2: $a=3 k+2$
If $a=3 k+2$, then $a+4=(3 k+2)+4=3 k+6=3(k+2)$
i.e., $a+4=3(k+2)$. Hence, $3 \mid(a+4)$

Since all possibilities have been exhausted and since our proposition is true for each possibility, we can say that for any integer a, one of the integers, $a, a+2, a+4$ is divisible by 3 .
8.
(a) The sum of the squares of two odd integers cannot be a perfect square.

Two arbitrary odd integers can be represented as $2 k+1$ and $2 j+1$.
The sum of their squares is $(2 k+1)^{2}+(2 j+1)^{2}=4 k^{2}+4 k+1+4 j^{2}+4 j+1=$ $4 k^{2}+4 k+4 j^{2}+4 j+2=4\left(k^{2}+k+j^{2}+j\right)+2=4 m+2$, where $m=k^{2}+k+j^{2}+j$
The point here, is that the sum of the squares of any two odd numbers is of the form $4 m+2$.
Could this be a perfect square? Well, let's see what form(s) perfect squares can have.
An even number $2 n$, when squared, has the form: $4 n^{2}=4 m$, where $m=n^{2}$.
An odd number $2 n+1$, when squared, has the form: $4 n^{2}+4 n+1=4 m+1$, where $m=n^{2}+n$.
What we have learned is that perfect squares are either of the form $4 m$ or $4 m+1$. Perfect squares are never of the form $4 m+2$, which is the form that the sum of the squares of two odd numbers always has.
Hence, the sum of the squares of two odd integers cannot be a perfect square.
(b) The product of four consecutive integers is one less than a perfect square.

We can represent the four consecutive integers as $n, n+1, n+2, n+3$.
Their product is $n(n+1)(n+2)(n+3)=n^{4}+6 n^{3}+11 n^{2}+6 n$
This is one less than $n^{4}+6 n^{3}+11 n^{2}+6 n+1=\left(n^{2}+3 n+1\right)^{2}$, which is a perfect square.
9. Establish that the difference of two consecutive cubes is never divisible by 2 .

Case 1: The smaller number is even.

Let a be even. Then \exists a natural number k such that $a=2 k$. This being the case, $a+1=2 k+1$
The difference of the cubes of these numbers is $(a+1)^{3}-a^{3}=(2 k+1)^{3}-(2 k)^{3}=$ $12 k^{2}+6 k+1=\underbrace{2\left(6 k^{2}+3 k\right)+1}_{2 m+1}$, which is odd.

Case 2: The smaller number is odd.
Let a be odd. Then \exists a natural number k such that $a=2 k+1$. This being the case, $a+1=2 k+2$
The difference of the cubes of these numbers is $(a+1)^{3}-a^{3}=(2 k+2)^{3}-(2 k+1)^{3}=$ $12 k^{2}+18 k+7=\underbrace{2\left(6 k^{2}+9 k+3\right)+1}_{2 m+1}$, which is odd.
Since this exhausts all cases, and each case results in the difference of two consecutive cubes being odd, our assertion is proved.
11. If a and b are integers, not both of which are zero, verify that:

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)=\operatorname{gcd}(a,-b)=\operatorname{gcd}(-a,-b)
$$

$d=\operatorname{gcd}(a, b)$
$\Leftrightarrow d$ is the smallest natural number such that $\exists x, y \in \mathbf{Z}$ such that $a x+b y=d$
$\Leftrightarrow d$ is the smallest natural number such that $\exists x_{1}, y \in \mathbf{Z}$ such that

$$
\begin{equation*}
\underbrace{(-a) x_{1}}_{x_{1}=-x}+b y=d \tag{Eq.1}
\end{equation*}
$$

(and consequently $d=\operatorname{gcd}(-a, b)$
$\Leftrightarrow d$ is the smallest natural number such that $\exists x_{1}, y_{1} \in \mathbf{Z}$ such that
$\underbrace{(-a) x_{1}}_{x_{1}=-x}+\underbrace{(-b) y_{1}}_{y_{1}=-y}=d$
(and consequently $d=\operatorname{gcd}(-a,-b)$
$\Leftrightarrow d$ is the smallest natural number such that $\exists x, y_{1} \in \mathbf{Z}$ such that $\underbrace{(a) x}_{x=x_{1}}+\underbrace{(-b) y_{1}}_{y_{1}=-y}=d$.
(and consequently $d=\operatorname{gcd}(a,-b)$

Remark 1 In Eq. 1, if d were NOT the smallest natural number such that $\underbrace{(-a) x_{1}}_{x_{1}=-x}+b y=d$, then there must be a smaller natural number c such that
$\underbrace{(-a) x_{1}}_{x_{1}=-x}+b y=c$.
But this would imply that $\underbrace{a x_{1}}_{x_{1}=x}+b y=c$, contradicting the assumption that d was the smallest such natural number.

Remark 2 This was not the solution that I originally had. Julian Allagan showed me this proof and I liked it, so I changed the one that I had.

18a. Prove: The product of any three consecutive integers is divisible by 6 .
Let the integers be represented as $n, n+1, n+2$.
Claim: At least one of the integers must be even.
By the Division Algorithm, n is either of the form $2 k$ or $2 k+1$.
If n is of the form $2 k$, our claim is proved.
If n is of the form $2 k+1$, then $n+1=(2 k+1)+1=2(k+1)$, and hence, $n+1$ is even.

End of Claim

Claim: At least one of the integers must be divisible by 3 .
By the Division Algorithm, n is either of the form $3 k, 3 k+1$, or $3 k+2$.
If n is of the form $3 k$, then our claim is proved.
If n is of the form $3 k+1$, then $n+2=(3 k+1)+2=3(k+1)$, and hence, $n+2$ is divisible by 3 .

If n is of the form $3 k+2$, then $n+1=(3 k+2)+1=3(k+1)$, and hence, $n+1$ is divisible by 3 .

End of Claim

Thus $2 \mid(n)(n+1)(n+2)$ and $3 \mid(n)(n+1)(n+2)$.
Since gcd $(2,3)=1$, the second corollary to Theorem 2.4 (Divisibility Theorem 1) tells us that
$(2 \cdot 3) \mid(n)(n+1)(n+2)$.
i.e., the product of any three consecutive integers is divisible by 6 .

Remark 3 The following is an Alternate Proof by Madison Butler. She approaches the problem from a completely different perspective and I really like the proof.

Recall that $\binom{k+2}{3}$ represents the number of ways in which 3 objects can be selected from a set of $k+2$ objects, disregarding the order of selection. Hence, $\binom{k+2}{3}$ is a natural number.

Observe that $\binom{k+2}{3}=\frac{(k+2)!}{3!((k+2)-3)!}=\frac{(k+2)!}{3!(k-1)!}=\frac{(k+2)(k+1) k(k-1)!}{3!(k-1)!}=\frac{(k+2)(k+1) k}{3!}=\frac{(k+2)(k+1) k}{6}$ i.e., $k(k+1)(k+2)$, where $k,(k+1),(k+2)$ are natural numbers, is divisible by 6 . In the case in which $k,(k+1),(k+2)$ are negative integers, note that:
$k(k+1)(k+2)=(-1)|k||k+1||k+2|$, and that $|k||k+1||k+2|$ is divisible by 6, by our previous
observation.
Hence, $(-1)|k||k+1||k+2|=k(k+1)(k+2)$ is also divisible by 6 .
In the case in which at least one, but not all of $k,(k+1),(k+2)$ are negative integers, the product $k(k+1)(k+2)=0$, and is therefore divisible by 6 .

18b Prove: The product of any four consecutive integers is divisible by 24 .
Let the integers be represented as $n, n+1, n+2$, and $n+3$.
By our results in part 11a, the product $(n)(n+1)(n+2)(n+3)$ is divisible by 3 .
Claim: Our product is divisible by 8 .
By the Division Algorithm, n is either of the form $4 k, 4 k+1,4 k+2$, or $4 k+3$.
If n is of the form $4 k$, then $4 k+2=2(2 k+1)$, and the product
$(n)(n+1)(n+2)(n+3)=(4 k)(4 k+1)(4 k+2)(4 k+3)=(4 k)(4 k+1) 2(2 k+1)(4 k+3)$
$=8 k(4 k+1)(2 k+1)(4 k+3)$. Our claim is proved.
If n is of the form $4 k+1$, then $n+1=(4 k+1)+1=2(2 k+1)$. Furthermore, $n+3=(4 k+1)+3=4(k+1)$.

Hence, our product $(n)(n+1)(n+2)(n+3)=(4 k+1)(4 k+2)(4 k+3)(4 k+4)=$ $(4 k+1) 2(2 k+1)(4 k+3) 4(k+1)=8(4 k+1)(2 k+1)(4 k+3)(k+1)$.

And our claim is proved.
Similar arguments can be used to show that if $n=4 k+2$ or $n=4 k+3$, then $8 \mid(n)(n+1)(n+2)(n+3)$

End of Claim

We have established that $8 \mid(n)(n+1)(n+2)(n+3)$ and that $3 \mid(n)(n+1)(n+2)(n+3)$
Since $\operatorname{gcd}(3,8)=1$, the second corollary to Theorem 2.4 tells us that

$$
(3 \cdot 8) \mid(n)(n+1)(n+2)(n+3) .
$$

i.e., the product of any four consecutive integers is divisible by 24 .

Remark 4 The approach used by Madison Butler in part 18 a can be used in lieu of the preceding proof.

18c Prove: The product of any five consecutive integers is divisible by 120 .
By our results in part 11b, the product $(n)(n+1)(n+2)(n+3)(n+4)$ is divisible by 24 .

Since $\operatorname{gcd}(5,24)=1$, it remains to show that $5 \mid(n)(n+1)(n+2)(n+3)(n+4)$.
An argument similar to those of part 11a., can be used to show this. Hence, the product of five consecutive integers is divisible by 120.

Remark 5 The approach used by Madison Butler in 18a can be used in lieu of the preceding proof.

