
Homework - Sec. 2.3, Page 24
Fall 2016

Pat Rossi Name

1. If a|b, show that (−a) |b, a| (−b) , and (−a) | (−b) .

Let the hypothesis be given (i.e., suppose that a|b).
Then ∃ an integer m such that b = am.

⇒ b = (−a) (−m)⇒ (−a) |b.
Also, the fact that b = am implies that (−b) = a (−m) , hence, a| (−b) .
Finally, the fact that b = am implies that (−b) = (−a) (m) , hence, (−a) | (−b) .

2. Given integers a, b, c, d, verify the following:

(a) If a|b. then a|bc.

Let the hypothesis be given (i.e., suppose that a|b).
Then ∃ an integer m such that b = am.
⇒ bc = (am) c = a (mc)

i.e., bc = a (mc) .
Hence, a|bc.

(b) If a|b and a|c, then a2|bc.

Let the hypothesis be given (i.e., suppose that a|b and a|c).
Then ∃ an integer(s) m and n such that b = am and c = an.
Then bc = (am) (an) = a2 (mn) .
i.e., bc = a2 (mn) , and hence, a2|bc.

(c) a|b if and only if ac|bc,where c 6= 0.

a|b⇒ ac|bc
Suppose that a|b. Then ∃ an integer m such that b = am.
Observe: bc = (am) c = (ac)m
i.e., bc = (ac)m, and hence, ac|bc.
ac|bc⇒ a|b
Suppose that ac|bc. Then ∃ an integer m such that bc = (ac)m.
⇒ bc = (am) c.

Since c 6= 0, we can divide both sides by zero.
⇒ b = am.

Hence, a|b.



(d) If a|b and c|d, then ac|bd

Let the hypothesis be given (i.e., suppose that a|b and c|d).
Then ∃ an integer(s) m and n such that b = am and d = cn.
Then bd = (am) (cn) = (ac) (mn) .
i.e., bd = (ac) (mn) , and hence, ac|bd.

3. Prove or disprove: If a| (b+ c) , then either a|b or a|c.

This is false. To show that it’s false, we need to offer a counterexample.

Consider: a = 2, b = 3, and c = 5.

a| (b+ c) , but a - b and a - c.

5. Prove that for any integer a, one of the integers, a, a+ 2, a+ 4 is divisible by 3.

Let a be any integer. Then by the division algorithm, there are exactly three mutually
exclusive and mutually exhaustive possibilities – either a = 3k, a = 3k + 1, or a =
3k + 2.

Case 1: a = 3k

If a = 3k, then our assertion is proved.

Case 2: a = 3k + 1

If a = 3k + 1, then a+ 2 = (3k + 1) + 2 = 3k + 3 = 3 (k + 1)

i.e., a+ 2 = 3 (k + 1) . Hence, 3| (a+ 2)
Case 2: a = 3k + 2

If a = 3k + 2, then a+ 4 = (3k + 2) + 4 = 3k + 6 = 3 (k + 2)

i.e., a+ 4 = 3 (k + 2) . Hence, 3| (a+ 4)
Since all possibilities have been exhausted and since our proposition is true for each
possibility, we can say that for any integer a, one of the integers, a, a + 2, a + 4 is
divisible by 3.
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8. ~

(a) The sum of the squares of two odd integers cannot be a perfect square.

Two arbitrary odd integers can be represented as 2k + 1 and 2j + 1.
The sum of their squares is (2k + 1)2 + (2j + 1)2 = 4k2 + 4k+ 1+ 4j2 + 4j + 1 =
4k2+4k+4j2+4j+2 = 4 (k2 + k + j2 + j)+2 = 4m+2,wherem = k2+k+j2+j

The point here, is that the sum of the squares of any two odd numbers is of the
form 4m+ 2.

Could this be a perfect square? Well, let’s see what form(s) perfect squares can
have.
An even number 2n, when squared, has the form: 4n2 = 4m,where m = n2.

An odd number 2n+1, when squared, has the form: 4n2+4n+1 = 4m+1,where
m = n2 + n.

What we have learned is that perfect squares are either of the form 4m or 4m+1.
Perfect squares are never of the form 4m+ 2, which is the form that the sum of
the squares of two odd numbers always has.
Hence, the sum of the squares of two odd integers cannot be a perfect square.

(b) The product of four consecutive integers is one less than a perfect square.

We can represent the four consecutive integers as n, n+ 1, n+ 2, n+ 3.
Their product is n (n+ 1) (n+ 2) (n+ 3) = n4 + 6n3 + 11n2 + 6n
This is one less than n4+6n3+11n2+6n+1 = (n2 + 3n+ 1)2 , which is a perfect
square.

9. Establish that the difference of two consecutive cubes is never divisible by 2.

Case 1: The smaller number is even.

Let a be even.Then ∃ a natural number k such that a = 2k. This being the case,
a+ 1 = 2k + 1

The difference of the cubes of these numbers is (a+ 1)3 − a3 = (2k + 1)3 − (2k)3 =
12k2 + 6k + 1 = 2

(
6k2 + 3k

)
+ 1︸ ︷︷ ︸

2m+1

, which is odd.

Case 2: The smaller number is odd.

Let a be odd.Then ∃ a natural number k such that a = 2k + 1. This being the case,
a+ 1 = 2k + 2

The difference of the cubes of these numbers is (a+ 1)3−a3 = (2k + 2)3− (2k + 1)3 =
12k2 + 18k + 7 = 2

(
6k2 + 9k + 3

)
+ 1︸ ︷︷ ︸

2m+1

, which is odd.

Since this exhausts all cases, and each case results in the difference of two consecutive
cubes being odd, our assertion is proved.
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11. If a and b are integers, not both of which are zero, verify that:

gcd (a, b) = gcd (−a, b) = gcd (a,−b) = gcd (−a,−b) .

d = gcd (a, b)

⇔ d is the smallest natural number such that ∃x, y ∈ Z such that ax+ by = d

⇔ d is the smallest natural number such that∃x1, y ∈ Z such that

(−a)x1︸ ︷︷ ︸
x1=− x

+ by = d (Eq.1)

(and consequently d = gcd (−a, b)

⇔ d is the smallest natural number such that ∃x1, y1 ∈ Z such that

(−a)x1︸ ︷︷ ︸
x1=− x

+ (−b) y1︸ ︷︷ ︸
y1=− y

= d

(and consequently d = gcd (−a,−b)

⇔ d is the smallest natural number such that ∃x, y1 ∈ Z such that (a)x︸︷︷︸
x= x1

+(−b) y1︸ ︷︷ ︸
y1=− y

= d.

(and consequently d = gcd (a,−b)

Remark 1 In Eq. 1, if d were NOT the smallest natural number such that

(−a)x1︸ ︷︷ ︸
x1=−x

+ by = d, then there must be a smaller natural number c such that

(−a)x1︸ ︷︷ ︸
x1=−x

+ by = c.

But this would imply that ax1︸︷︷︸
x1=x

+ by = c, contradicting the assumption that d was the

smallest such natural number.

Remark 2 This was not the solution that I originally had. Julian Allagan showed
me this proof and I liked it, so I changed the one that I had.
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18a. Prove: The product of any three consecutive integers is divisible by 6.

Let the integers be represented as n, n+ 1, n+ 2.

Claim: At least one of the integers must be even.

By the Division Algorithm, n is either of the form 2k or 2k + 1.

If n is of the form 2k, our claim is proved.

If n is of the form 2k + 1, then n + 1 = (2k + 1) + 1 = 2 (k + 1) , and hence, n + 1 is
even.

End of Claim

Claim: At least one of the integers must be divisible by 3.

By the Division Algorithm, n is either of the form 3k, 3k + 1, or 3k + 2.

If n is of the form 3k, then our claim is proved.

If n is of the form 3k + 1, then n + 2 = (3k + 1) + 2 = 3 (k + 1) , and hence, n + 2 is
divisible by 3.

If n is of the form 3k + 2, then n + 1 = (3k + 2) + 1 = 3 (k + 1) , and hence, n + 1 is
divisible by 3.

End of Claim

Thus 2| (n) (n+ 1) (n+ 2) and 3| (n) (n+ 1) (n+ 2) .

Since gcd (2, 3) = 1, the second corollary to Theorem 2.4 (Divisibility Theorem 1)
tells us that

(2 · 3) | (n) (n+ 1) (n+ 2) .
i.e., the product of any three consecutive integers is divisible by 6.

Remark 3 The following is an Alternate Proof byMadison Butler. She approaches
the problem from a completely different perspective and I really like the proof.

Recall that
(
k+2
3

)
represents the number of ways in which 3 objects can be selected from

a set of k + 2 objects, disregarding the order of selection. Hence,
(
k+2
3

)
is a natural

number.

Observe that
(
k+2
3

)
= (k+2)!

3!((k+2)−3)! =
(k+2)!
3!(k−1)! =

(k+2)(k+1)k(k−1)!
3!(k−1)! = (k+2)(k+1)k

3!
= (k+2)(k+1)k
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i.e., k (k + 1) (k + 2) , where k, (k + 1) , (k + 2) are natural numbers, is divisible by 6.

In the case in which k, (k + 1) , (k + 2) are negative integers, note that:
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k (k + 1) (k + 2) = (−1) |k| |k + 1| |k + 2| , and that |k| |k + 1| |k + 2| is divisible by 6,
by our previous

observation.

Hence, (−1) |k| |k + 1| |k + 2| = k (k + 1) (k + 2) is also divisible by 6.

In the case in which at least one, but not all of k, (k + 1) , (k + 2) are negative integers,
the product k (k + 1) (k + 2) = 0, and is therefore divisible by 6.

18b Prove: The product of any four consecutive integers is divisible by 24.

Let the integers be represented as n, n+ 1, n+ 2, and n+ 3.

By our results in part 11a, the product (n) (n+ 1) (n+ 2) (n+ 3) is divisible by 3.

Claim: Our product is divisible by 8.

By the Division Algorithm, n is either of the form 4k, 4k + 1, 4k + 2, or 4k + 3.

If n is of the form 4k, then 4k + 2 = 2 (2k + 1) , and the product

(n) (n+ 1) (n+ 2) (n+ 3) = (4k) (4k + 1) (4k + 2) (4k + 3) = (4k) (4k + 1) 2 (2k + 1) (4k + 3)

= 8k (4k + 1) (2k + 1) (4k + 3) . Our claim is proved.

If n is of the form 4k + 1, then n + 1 = (4k + 1) + 1 = 2 (2k + 1) .Furthermore,
n+ 3 = (4k + 1) + 3 = 4 (k + 1) .

Hence, our product (n) (n+ 1) (n+ 2) (n+ 3) = (4k + 1) (4k + 2) (4k + 3) (4k + 4) =

(4k + 1) 2 (2k + 1) (4k + 3) 4 (k + 1) = 8 (4k + 1) (2k + 1) (4k + 3) (k + 1) .

And our claim is proved.

Similar arguments can be used to show that if n = 4k + 2 or n = 4k + 3, then
8| (n) (n+ 1) (n+ 2) (n+ 3)

End of Claim

We have established that 8| (n) (n+ 1) (n+ 2) (n+ 3) and that 3| (n) (n+ 1) (n+ 2) (n+ 3)

Since gcd (3, 8) = 1, the second corollary to Theorem 2.4 tells us that

(3 · 8) | (n) (n+ 1) (n+ 2) (n+ 3) .

i.e., the product of any four consecutive integers is divisible by 24.

Remark 4 The approach used by Madison Butler in part 18 a can be used in lieu
of the preceding proof.
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18c Prove: The product of any five consecutive integers is divisible by 120.

By our results in part 11b, the product (n) (n+ 1) (n+ 2) (n+ 3) (n+ 4) is divisible
by 24.

Since gcd (5, 24) = 1, it remains to show that 5| (n) (n+ 1) (n+ 2) (n+ 3) (n+ 4) .

An argument similar to those of part 11a., can be used to show this.

Hence, the product of five consecutive integers is divisible by 120.

Remark 5 The approach used byMadison Butler in 18a can be used in lieu of the
preceding proof.
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