MTH 3311 Test #1

Fall 2018

Pat Rossi

Name

Show CLEARLY how you arrive at your answers.

- 1. Classify the following according to **order** and **linearity**. If an equation is **not linear**, explain why.
 - (a) $y''' + x^2y'' 2xy = x^2 4$ order 3, linear.

The highest order of derivative of y is 3. Furthermore, y and its derivatives are all raised to the 1^{st} power, no derivative of y is a "co-factor" of y or any other derivative of y, and neither y nor any of its derivatives are the "inner function" of a composite function, so the equation is linear.

(b) $y^{(5)} + x^2yy'' = \sin(x)$ order 5, non-linear.

The highest order of derivative of y is 5. ($y^{(5)}$ is the *fifth derivative* of y – it is NOT y^5 .) Since y'' is a "co-factor" of y, the equation is non-linear.

(c) $y^{(4)} + 2xy'' + y^2 = 6x - 6$ order 4, non-linear.

The highest order of derivative of y is 4. $(y^{(4)})$ is the fourth derivative of y – it is NOT y^4 .) Since y is raised to a power other than 1, the equation is non-linear.

(d) $\sin(x)y''' - 3xy' + x^3y = e^x + \sin(x)$ order 3, linear.

The highest order of derivative of y is 3. Furthermore, y and its derivatives are all raised to the 1^{st} power, no derivative of y is a "co-factor" of y or any other derivative of y, and neither y nor any of its derivatives are the "inner function" of a composite function, so the equation is linear.

(e) $y'' - y' + 4y = \frac{x}{x^2 + 1}$ order 2, linear.

The highest order of derivative of y is 2. Furthermore, y and its derivatives are all raised to the 1^{st} power, no derivative of y is a "co-factor" of y or any other derivative of y, and neither y nor any of its derivatives are the "inner function" of a composite function, so the equation is linear.

2. Show that the function $y = c_1 e^{-3x} + c_2 e^{3x} + 4x^2 + 6x$ is a solution of the differential equation $y'' - 9y = -36x^2 - 54x + 8$

Observe:

$$y = c_1 e^{-3x} + c_2 e^{3x} + 4x^2 + 6x
 y' = -3c_1 e^{-3x} + 3c_2 e^{3x} + 8x + 6
 y'' = 9c_1 e^{-3x} + 9c_2 e^{3x} + 8$$

Plugging into the left side of the equation, we have:

$$y'' - 9y = (9c_1e^{-3x} + 9c_2e^{3x} + 8) - 9(c_1e^{-3x} + c_2e^{3x} + 4x^2 + 6x)$$

$$= (9 - 9)c_1e^{-3x} + (9 - 9)c_2e^{3x} + (8 - 36x^2 - 54x)$$

$$= -36x^2 - 54x + 8$$

i.e.,
$$y'' - 9y = -36x^2 - 54x + 8$$

Hence, $y = c_1 e^{-3x} + c_2 e^{3x} + 4x^2 + 6x$ is a solution of the differential equation:

$$y'' - 9y = -36x^2 - 54x + 8.$$

3. Solve: $\frac{dy}{dx} = xy + 2y + x + 2$; subject to the initial condition $y\left(0\right) = 1$ (Assume that $x, y \ge 0$)

Solve the equation by "separating the variables," and then solve the equation using the "integrating factor method."

The variables can be separated.

$$\Rightarrow \frac{dy}{dx} = (x+2)y + x + 2$$

$$\Rightarrow \frac{dy}{dx} = (x+2)y + (x+2)$$

$$\Rightarrow \frac{dy}{dx} = (x+2)(y+1)$$

$$\Rightarrow \frac{1}{y+1}dy = (x+2) dx$$

$$\Rightarrow \int \frac{1}{y+1} dy = \int (x+2) dx$$

$$\Rightarrow \ln\left(y+1\right) = \frac{1}{2}x^2 + 2x + C$$

$$\Rightarrow e^{\ln(y+1)} = e^{\frac{1}{2}x^2 + 2x + C} = e^{\frac{1}{2}x^2 + 2x} e^C = e^{\frac{1}{2}x^2 + 2x} C_1 = C_1 e^{\frac{1}{2}x^2 + 2x}$$

i.e.,
$$y + 1 = C_1 e^{\frac{1}{2}x^2 + 2x}$$

$$y = C_1 e^{\frac{1}{2}x^2 + 2x} - 1$$

Recall: y(0) = 1

$$\Rightarrow 1 = C_1 e^{\frac{1}{2}(0)^2 + 2(0)} - 1 = C_1 - 1$$

$$\Rightarrow 2 = C_1$$

$$\Rightarrow y = 2e^{\frac{1}{2}x^2 + 2x} - 1$$

Alternative Solution on the next page

Alternatively: We can solve this equation using the "Integrating Factor Method"

i) Re-express the equation in the form: y' + p(x)y = Q(x)

$$\frac{dy}{dx} = xy + 2y + x + 2$$

$$\Rightarrow y' = xy + 2y + x + 2$$

$$\Rightarrow y' = (x+2)y + x + 2$$

$$\Rightarrow$$
 $y' - (x+2)y = (x+2)$

$$\Rightarrow y' + \underbrace{(-x-2)}_{p(x)} y = (x+2)$$

- ii) Compute the integrating factor: $e^{\int p(x)dx} = e^{\int (-x-2)dx} = e^{-\frac{1}{2}x^2-2x}$
- iii) Multiply both sides by the integrating factor

$$\Rightarrow e^{-\frac{1}{2}x^2-2x}y' + (-x-2)y = (x+2)e^{-\frac{1}{2}x^2-2x}$$

iv) Express the left side as the derivative of a product

$$\Rightarrow \left[e^{-\frac{1}{2}x^2 - 2x} y \right] = (x+2) e^{-\frac{1}{2}x^2 - 2x}$$

v) Integrate!

$$\Rightarrow \int \frac{d}{dx} \left[e^{-\frac{1}{2}x^2 - 2x} y \right] dx = \int \left(x + 2 \right) e^{-\frac{1}{2}x^2 - 2x} dx$$

i.e.,
$$\int \frac{d}{dx} \left[e^{-\frac{1}{2}x^2 - 2x} y \right] dx = \int \underbrace{e^{-\frac{1}{2}x^2 - 2x}}_{e^u} \underbrace{(x+2)}_{dx} dx = \int e^u \left(-du \right) = -\int e^u du = -e^u + C = -e^{-\frac{1}{2}x^2 - 2x} + C$$

$$\Rightarrow \left[e^{-\frac{1}{2}x^2 - 2x}y \right] = -e^{-\frac{1}{2}x^2 - 2x} + C$$

vi) Solve for y

$$\Rightarrow y = -1 + Ce^{\frac{1}{2}x^2 + 2x}$$

i.e.,
$$y = Ce^{\frac{1}{2}x^2 + 2x} - 1$$

Incorporating the initial condition y(0) = 1, we have:

$$\Rightarrow 1 = Ce^{\frac{1}{2}(0)^2 + 2(0)} - 1 = C - 1$$

i.e.,
$$1 = C - 1$$

$$\Rightarrow C = 2$$

$$\Rightarrow y = 2e^{\frac{1}{2}x^2 + 2x} - 1$$

4. Solve: $y' + \frac{1}{x+1}y = \frac{1}{x+1}\sin(x)$; using the "integrating factor method." (Assume that x, y > 0.)

i) Express the equation in the form: y' + p(x)y = Q(x)

$$y' + \underbrace{\frac{1}{x+1}}_{p(x)} y = \underbrace{\frac{1}{x+1}\sin(x)}_{Q(x)}$$

ii) Compute the integrating factor: $e^{\int p(x)dx} = e^{\int \left(\frac{1}{x+1}\right)dx} = \underbrace{e^{\ln|x+1|} = e^{\ln(x+1)}}_{\text{because } x > 0} = (x+1)$

iii) Multiply both sides by the integrating factor

$$\Rightarrow$$
 $(x+1)y' + (x+1)\frac{1}{x+1}y = (x+1)\frac{1}{x+1}\sin(x)$

i.e.,
$$(x+1)y' + y = \sin(x)$$

iv) Express the left side as the derivative of a product

$$\Rightarrow \frac{d}{dx}[(x+1)y] = \sin(x)$$

v) Integrate!

$$\Rightarrow \int \frac{d}{dx} [(x+1)y] dx = \int \sin(x) dx$$

i.e.,
$$(x+1)y = -\cos(x) + C$$

vi) Solve for y

$$y = -\frac{\cos(x)}{x+1} + \frac{C}{x+1} = -\frac{\cos(x) + C_1}{x+1}$$

5. Determine whether or not the equation is exact. If the equation is exact, solve it.

$$\underbrace{\left(3x^{2}y + y\cos(x) + 2y^{3} + e^{x}\right)}_{M} dx + \underbrace{\left(x^{3} + 6xy^{2} + \sin(x) + \cos(y)e^{\sin(y)}\right)}_{N} dy = 0$$

The equation will be exact if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

Check:

$$\begin{split} &\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left[3x^2y + y\cos\left(x\right) + 2y^3 + e^x \right] = \cos\left(x\right) + 3x^2 + 6y^2 \\ &\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left[x^3 + 6xy^2 + \sin\left(x\right) + \cos\left(y\right) e^{\sin(y)} \right] = \cos\left(x\right) + 3x^2 + 6y^2 \\ &\text{i.e., } \frac{\partial M}{\partial y} = \cos\left(x\right) + 3x^2 + 6y^2 = \frac{\partial N}{\partial x} \end{split}$$

Hence, the original equation is exact.

The solution to the Differential Equation is of the form: U(x,y) = C,

where
$$U(x,y) = \int M dx = \int N dy$$
.

$$U(x,y) = \int M dx = \int \left[3x^2y + y\cos(x) + 2y^3 + e^x \right] dx = x^3y + y\sin(x) + 2xy^3 + e^x + f(y) = C$$

$$U(x,y) = \int N dx = \int \left[x^3 + 6xy^2 + \sin(x) + \cos(y) e^{\sin(y)} \right] dx = x^3y + 2xy^3 + y\sin(x) + e^{\sin(y)} + g(x) = C$$

Comparing terms, we see that $f(y) = e^{\sin(y)}$ and $g(x) = e^x$

Thus,
$$U = x^3y + 2xy^3 + \sin(x)y + e^x + e^{\sin(y)} = C$$

Our solution y is given implicitly by the equation:

$$x^{3}y + 2xy^{3} + \sin(x)y + e^{x} + e^{\sin(y)} = C$$

6. Solve: $2xy\frac{dy}{dx} = 3x^2 + 4y^2$ using the substitution $v = \frac{y}{x}$. (Assume that x, y > 0)

i) Re-write in the form: $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$

$$2xy\frac{dy}{dx} = 3x^2 + 4y^2$$

$$\Rightarrow 2\frac{y}{x}\frac{dy}{dx} = 3 + 4\left(\frac{y}{x}\right)^2$$

$$\Rightarrow \frac{dy}{dx} = \underbrace{\frac{3}{2} \frac{1}{\left(\frac{y}{x}\right)} + 2\left(\frac{y}{x}\right)}_{f\left(\frac{y}{x}\right)}$$

ii) Make the following substitutions: $v = \frac{y}{x}$; $\frac{dy}{dx} = v + x \frac{dv}{dx}$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{3}{2} \frac{1}{v} + 2v$$

$$\Rightarrow x \frac{dv}{dx} = \frac{3}{2} \frac{1}{v} + v = \frac{3}{2v} + v = \frac{3}{2v} + \frac{2v^2}{2v} = \frac{2v^2 + 3}{2v}$$

i.e.
$$x \frac{dv}{dx} = \frac{2v^2 + 3}{2v}$$

iii) Separate!

$$\frac{2v}{2v^2+3}dv = \frac{1}{x}dx$$

iv) Integrate:

$$\int \frac{2v}{2v^2+3} dv = \int \frac{1}{x} dx \quad \text{(Eq. 1)}$$

Scratchwork:

$$\int \frac{2v}{2v^2+3} dv = \int \underbrace{\frac{1}{2v^2+3}}_{\frac{1}{2}du} \underbrace{\frac{2vdv}{\frac{1}{2}du}} = \int \frac{1}{u} \left(\frac{1}{2}du\right) = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| = \frac{1}{2} \ln|2v^2+3| = \frac{1}{2} \ln\left(2v^2+3\right)$$

i.e.,
$$\int \frac{2v}{2v^2+3} dv = \frac{1}{2} \ln (2v^2+3)$$

Substituting this into Eq. 1, we have:

$$\frac{1}{2}\ln(2v^2 + 3) = \ln(x) + C$$

$$\Rightarrow \ln(2v^2 + 3) = 2\ln(x) + C_1$$

$$\Rightarrow \ln(2v^2 + 3) = \ln(x^2) + C_1$$

$$\Rightarrow e^{\ln(2v^2+3)} = e^{\ln(x^2)+C_1} = e^{\ln(x^2)}e^{C_1} = C_2e^{\ln(x^2)} = C_2x^2$$

i.e.,
$$2v^2 + 3 = C_2x^2$$

$$\Rightarrow 2\left(\frac{y}{x}\right)^2 + 3 = C_2x^2$$

$$\Rightarrow 2\left(\frac{y^2}{x^2}\right) + 3 = C_2 x^2$$

$$\Rightarrow 2y^2 + 3x^2 = C_2 x^4$$

Our solution is given implicitly by the equation:

$$2y^2 + 3x^2 = C_2 x^4$$