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Name

Show CLEARLY how you arrive at your answers.

1. Classify the following according to order and linearity. If an equation is not linear, explain why.

(a)

y" 2y —2zy =22 —4 order 3, linear.

The highest order of derivative of y is 3. Furthermore, y and its derivatives are all raised to the
15¢ power, no derivative of y is a “co-factor” of y or any other derivative of y, and neither y nor
any of its derivatives are the “inner function” of a composite function, so the equation is linear.

y® 4+ 22y = sin () order 5, non-linear.

The highest order of derivative of y is 5. (y®) is the fifth derivative of y — it is NOT 3°.) Since 3"
is a “co-factor” of y, the equation is non-linear.

y @ + 229" + 9% =62 — 6 order 4, non-linear.

The highest order of derivative of y is 4. (y*) is the fourth derivative of y — it is NOT y*.) Since
y is raised to a power other than 1, the equation is non-linear.

sin (z) y"" — 32y’ + 2%y = € + sin (z) order 3, linear.

The highest order of derivative of y is 3. Furthermore, y and its derivatives are all raised to the
15¢ power, no derivative of y is a “co-factor” of y or any other derivative of y, and neither y nor
any of its derivatives are the “inner function” of a composite function, so the equation is linear.

' -y +y= S order 2, linear.

The highest order of derivative of y is 2. Furthermore, y and its derivatives are all raised to the
15¢ power, no derivative of y is a “co-factor” of y or any other derivative of y, and neither y nor
any of its derivatives are the “inner function” of a composite function, so the equation is linear.

2. Show that the function y = c;e73% 4 €% + 422 + 62 is a solution of the differential equation

y" — 9y = —3622 — 5dx + 8

Observe:
y = cie 3%+ e’ + 422 + 62
Yy = —3c1e73% 4+ 3cee’ + 81 + 6
Yy = 9c1e 3" 4 9ce3” + 8

Plugging into the left side of the equation, we have:

y// _ gy

= (9016739” + 9cpe3® + 8) -9 (cle’gm + coe3® + 422 + 6$)
= (9-9)c1e7® +(9—9) c2® + (8 — 3622 — 54x)
= —362%—54x+38

ie., vy’ — 9y = —362% — 54z + 8

Hence, y = c1e73% + c0e3® + 422 + 62 is a solution of the differential equation:

y// _

9y = —3622 — 5dx + 8.



3. Solve: % = zy + 2y + x + 2; subject to the initial condition y (0) = 1 (Assume that z,y > 0)

Solve the equation by “separating the variables,” and then solve the equation using the “integrating
factor method.”

The variables can be separated.
=>E=@+2y+tr+2

= % =(x+2)y+(x+2)
=W = (z4+2)(y+1)

:>y—j_1dy:(x+2)dx

éfﬁdy:f(ermdx

=hh(y+1)=122+22+C

= eln(y+1) — 32°+22+C _ Fa’+22,C0 _ e%z2+2:ccl _ Cle%m2+2m
ie,y+1= Cred®’+2e

y= Cle%m2+2w 1

Recall: y(0) =1

=1=Cpez 020 _1 = -1

=2=0

=y =232 ]

Alternative Solution on the next page



Alternatively: We can solve this equation using the “Integrating Factor Method”
i) Re-express the equation in the form: y' + p (z)y = Q (z)
% =zy+2y+x+2
=y =xy+2y+x+2
sy =@@+2y+a+2
=1y —(z+2)y=(r+2)
=y + (—z-2)y=(r+2)

—

p(z)

ii) Compute the integrating factor: el P@)de — of(-2=2)de _ —32°—20
iii) Multiply both sides by the integrating factor
= e 2T 2yl 4 (g — y=(r+2) e 3’2
iv) Express the left side as the derivative of a product
= [e‘éﬁ_zxy} =(z+2) e 37 2

v) Integrate!

= [ {e‘éxz_zxy} do = [ (z+2)e 2% "2y

ie, [ 4 [e’%w2’2$y} dr = fefémzfzm(x +2)dz = [ (—du) = — [e'du=—e"+C =
—

u
€ —du

1

. [e—%ﬁ—my} _ ety o

vi) Solve for y

= y=—1+ Ceds +2

fe.,y=Cer® 2 _1

Incorporating the initial condition y (0) = 1, we have:
=1=Ce2®+20) _ 1 =C -1

fe,1=0C—1

=C=2

=y =22t _]

1

—e 2

z2—2x + C



1

57 sin () ; using the “integrating factor method.” (Assume that z,y > 0.)

4. Solve: y' + a:%i-ly =

i) Express the equation in the form: ¢ +p(z)y = Q (x)

Yy + y= —sin (2)
r+1 r+1
p(z) Q(z)

ii) Compute the integrating factor: e/ P(¥)dr — ef (Fr)de = clle+l] _ glna+1) (x+1)

because x >0

iii) Multiply both sides by the integrating factor

= e+ 1)y + (@ +1) 737y = (z+1) g sin(2)

ie, (zx+1)y +y=sin(z)

iv) Express the left side as the derivative of a product
= L [(z+1)y] = sin (2)

v) Integrate!

= f% [(z+1)y]dz = [sin(z)dx

ie, (z+1)y=—cos(z)+C

vi) Solve for y

__cos(m)+ Cc _ _ cos(x)+C

Y= r+1 x+1 z+1




5. Determine whether or not the equation is exact. If the equation is exact, solve it.

(32%y + ycos (z) + 2y° + €")dx + (x?’ + 6xy* + sin (z) + cos (y) eSi“(y))dy =0

M N
The equation will be exact if % = %—Jl
Check:
%—Aj = 8% [3z2y + y cos (z) + 2y° + €] = cos (z) + 3% + 6y>
%—JZ = a% (2 + 62y? + sin (z) + cos (y) em©)] = cos (z) + 3z% + 6y*
ie., %—Ay/[ = cos (z) + 322 + 6y* = %
Hence, the original equation is exact.
The solution to the Differential Equation is of the form: U (z,y) = C,
where U (z,y) = [ Mdz = [ Ndy.
Ul(z,y) = [ Mdz = [ [322y + ycos (z) + 2y* + €] dz = 23y + ysin (z) + 22y + " + f (y) = C
U(z,y) = [ Ndz = [ [z + 6zy? + sin (z) + cos (y) esm(y)] dr = z3y + 2zy® +ysin (z) + W) 4 g (z) = C
Comparing terms, we see that f (y) = ¢*™®) and g (z) = e*

Thus, U = 23y 4 22> +sin (z) y + e* + W) = C

Our solution y is given implicitly by the equation:

23y + 229> 4 sin (z) y + e 4 W) = C




6. Solve: Qxy% =3z? +4y? using the substitution v = £. (Assume that z,y > 0)
i) Re-write in the form: % =f(%)

Q:Ey% =322 + 492

= oudy _ 3.4 4(%)°

z dx

iii) Separate!

2v _ 1
sordv = pdx

iv) Integrate:

20223_3dv = f%dm (Eq. 1)
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Scratchwork:

1
f%dv:fWQUdv:f%(%du):%f%du:%ln|u|zéln’2v2+3‘:%111(2112—1—3)

: 2 1
Le., [ 53%5dv = §1n (20% + 3)
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Substituting this into Eq. 1, we have:

iln (202 +3)=In(2)+C

=1In (20?4 3) =2In(z) + C}

=1In (20 +3) =1n(2?) + C1

- n(20°43) _ n(2®)+C1 _ In(2®) 01 _ CQeln(zz) — Cyz?
ie., 202 4+ 3 = Coz?

=2 (%)2 +3 = Coz?

=2(%) +3=C?



= 2y + 322 = Coz*

Our solution is given implicitly by the equation:

2y? + 322 = Coz?




