
MTH 3318 Test #1 - Solutions
Fall 2023

Pat Rossi Name

Instructions. Fully document your work.

For problems 1 - 2 prove one using Mathematical Induction.

1. 1 + 3 + 5 + . . .+ (2n− 1) = n2

i.e.
∑n

i=1 (2i− 1) = n2 (This is P (n))

Proof.

Step #1: Show that P (n) is true for n = 1∑1
i=1 (2i− 1) = (2 (1)− 1) = 1 = (1)

2 True.

Step #2: Assume that P (n) is true for n = k, and show that P (n) is true for n = k+1

i.e., Assume that
∑k

i=1 (2i− 1) = k2 for some natural number k, and show

that
∑k+1

i=1 (2i− 1) = (k + 1)
2

Observe:

∑k+1
i=1 (2i− 1) =

k∑
i=1

(2i− 1) + (2 (k + 1)− 1) = k2 + (2 (k + 1)− 1)︸ ︷︷ ︸
by Induction Hypothesis

= k2 + 2k + 1 = (k + 1)2

i.e.,
∑k+1

i=1 (2i− 1) = (k + 1)
2

Hence,
∑n

i=1 (2i− 1) = n2 for all natural numbers, n.



2. 1
1·3 +

1
3·5 +

1
5·7 + . . .+

1
(2n−1)(2n+1) =

n
2n+1

i.e.
∑n

j=1
1

(2j−1)(2j+1) =
n

2n+1
(This is P (n))

Proof.

Step #1: Show that P (n) is true for n = 1∑1
i=1

1
(2i−1)(2i+1) =

1
(2(1)−1)(2(1)+1) =

1
3
= (1)

2(1)+1
True.

Step #2: Assume that P (n) is true for n = k, and show that P (n) is true for n = k+1

i.e., Assume that
∑k

i=1
1

(2i−1)(2i+1) =
k

2k+1
for some natural number k, and show that∑k+1

i=1
1

(2i−1)(2i+1) =
k+1

2(k+1)+1

i.e.,
∑k+1

i=1
1

(2i−1)(2i+1) =
k+1
2k+3

Observe:∑k+1
i=1

1
(2i−1)(2i+1) =

∑k
i=1

1
(2i−1)(2i+1) +

1
(2(k+1)−1)(2(k+1)+1)

= k
2k+1

+ 1
(2k+1)(2k+3)

(by Induction Hypothesis)

= k
2k+1
· 2k+3
2k+3

+ 1
(2k+1)(2k+3)

= 2k2+3k+1
(2k+1)(2k+3)

= (2k+1)(k+1)
(2k+1)(2k+3)

= (k+1)
(2k+3)

i.e.,
∑k+1

i=1
1

(2i−1)(2i+1) =
k+1
2k+3

Hence,
∑n

i=1
1

(2i−1)(2i+1) =
n

2n+1
for all natural numbers, n.
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For problems 3 - 5 prove one using Mathematical Induction.

3. 1 + 5 + 9 + . . .+ (4n− 3) = 2n2 − n

i.e.,
∑n

i=1 (4i− 3) = 2n2 − n (This is P (n))

Proof.

Step #1: Show that P (n) is true for n = 1∑1
i=1 (4i− 3) = 4 (1)− 3 = 1 = 2 (1)

2 − (1) True.

Step #2: Assume that P (n) is true for n = k, and show that P (n) is true for n = k+1

i.e., Assume that
∑k

i=1 (4i− 3) = 2k2 − k for some natural number k, and show that∑k+1
i=1 (4i− 3) = 2 (k + 1)

2 − (k + 1)

Equivalently, show that
∑k+1

i=1 (4i− 3) = 2k2 + 3k + 1

Observe:

∑k+1
i=1 (4i− 3) =

k∑
i=1

(4i− 3) + 4 [(k + 1)− 3] =
(
2k2 − k

)
+ 4 [(k + 1)− 3]︸ ︷︷ ︸

by Induction Hypothesis

= (2k2 − k) + 4k + 4− 3

= 2k2 + 3k + 1

i.e.,
∑k+1

i=1 (4i− 3) = 2k2 + 3k + 1

Hence,
∑n

i=1 (4i− 3) = 2n2 − n for all natural numbers, n.
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4. 12 + 22 + 32 + . . .+ n2 = n(n+1)(2n+1)
6

i.e.
∑n

i=1 i
2 = n(n+1)(2n+1)

6
(This is P (n))

Proof.

Step #1: Show that P (n) is true for n = 1.∑1
i=1 i

2 = 12 = 1 = (1)[(1)+1][2(1)+1]
6

. True.

Step #2: Assume that P (n) is true for n = k, and show that P (n) is true for
n = k + 1.

i.e., Assume that
∑k

i=1 i
2 = k(k+1)(2k+1)

6
and show that

∑k+1
i=1 i

2 = (k+1)[(k+1)+1][2(k+1)+1]
6

.

i.e., show that
∑k+1

i=1 i
2 = (k+1)(k+2)(2k+3)

6

Observe:

∑k+1
i=1 i

2 =
k∑
i=1

i2 + (k + 1)2 =
k (k + 1) (2k + 1)

6
+ (k + 1)2︸ ︷︷ ︸

by Induction Hypothesis

= k(k+1)(2k+1)
6

+ 6(k+1)2

6

= k(k+1)(2k+1)+6(k+1)2

6
= k(k+1)(2k+1)+6(k+1)2

6
= (k+1)[k(2k+1)+6(k+1)]

6

=
(k+1)[2k2+7k+6]

6
= (k+1)(k+2)(2k+3)

6

i.e.,
∑k+1

i=1 i
2 = (k+1)(k+2)(2k+3)

6

Hence,
∑n

i=1 i
2 = n(n+1)(2n+1)

6
; ∀n ∈ N
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5. n4

4
< 13 + 23 + 33 + . . .+ n3 all natural numbers, n. (This is P (n))

Proof.

Step #1: Show that P (n) is true for n = 1.

(1)4

4
= 1

4
< 13

i.e., (1)
4

4
< 13. True.

Step #2: Assume that P (n) is true for n = k, and show that P (n) is true for
n = k + 1.

i.e., Assume that k
4

4
< 13 + 23 + 33 + . . .+ k3

and show that (k+1)
4

4
< 13 + 23 + 33 + . . .+ (k + 1)3

Remark: Our argument may be easier to follow if we “swap the sides”of the inequality.
(i.e., if we show that: 13 + 23 + 33 + . . .+ (k + 1)3 > (k+1)4

4
)

Observe: 13 + 23 + 33 + . . .+ k3 + (k + 1)3 >
k4

4
+ (k + 1)3︸ ︷︷ ︸

By our induction hypothesis

= k4

4
+(k3 + 3k2 + 3k + 1)

= k4

4
+

4(k3+3k2+3k+1)
4

= k4+4k3+12k2+12k+4
4

≥ k4+4k3+6k2+4k+1
4

= (k+1)4

4

i.e., 13 + 23 + 33 + . . .+ (k + 1)3 > (k+1)4

4
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For problems 6 - 7, prove one using Mathematical Induction:

6. n (n+ 1) is divisible by 2 for all natural numbers, n. (This is P (n))

Proof.

First, note that a natural number n is divisible by 2 if there exists a natural number
m such that n = 2m

Step #1: Show that P (n) true for n = 1.

1 ((1) + 1) = 2 = 2 · 1

Thus, n (n+ 1) is divisible by 2, for n = 1.

i.e., 1 ((1) + 1) = 2 = 2 · 1 True.

Step #2: Assume that P (n) is true for n = k, and show that P (n) is true for n = k+1

i.e., Assume that k (k + 1) is divisible by 2, and show that

(k + 1) [(k + 1) + 1] is divisible by 2.

i.e., Assume that k (k + 1) = 2m, and show that

(k + 1) (k + 2) is divisible by 2.

Observe: (k + 1) (k + 2) = (k + 1) k + (k + 1) 2 = k (k + 1) + 2 (k + 1) = 2m+ 2︸ ︷︷ ︸
by Ind. Hyp.

=

2 (m+ 1) .

i.e., (k + 1) (k + 2) = 2 (m+ 1) .

i.e., (k + 1) (k + 2) is divisible by 2.

Hence, n (n+ 1) is divisible by 2 for all natural numbers, n.
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7. Given that d
dx
[x0] = 0 and d

dx
[x1] = 1, show that d

dx
[xn] = nxn−1. (This is P (n)).

You may use the product rule: d
dx
[f (x) g (x)] = f ′ (x) g (x) + g′ (x) f (x) .

Proof.

Step #1: Show that P (n) is true for n = 1.

d
dx
[x1] = 1 = x0 = x1−1 True.

Step #2: Assume that P (n) is true for n = k, and show that P (n) is true for n = k+1

i.e., Assume that d
dx

[
xk
]
= kxk−1 and show that d

dx

[
xk+1

]
= (k + 1)x(k+1)−1

i.e., show that d
dx

[
xk+1

]
= (k + 1)xk

Observe:

d
dx

[
xk+1

]
= d

dx

[
xk · x

]
=

d

dx

[
xk
]
· x+ d

dx
[x] · xk︸ ︷︷ ︸

product rule

= kxk−1︸ ︷︷ ︸
Ind Hyp

· x + 1︸︷︷︸
given

· xk

= kxk + xk = (k + 1)xk

i.e. d
dx

[
xk+1

]
= (k + 1)xk

Hence, d
dx
[xn] = nxn−1 for all natural numbers n.
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For problems 8 - 9, prove one using Mathematical Induction:

8. (1 + x)n ≥ 1 + nx for any natural number n and any real number x ≥ −1.
(This is P (n))

Proof.

Step #1: Show that P (n) is true for n = 1

(1 + x)1 = 1 + x ≥ 1 + (1) x True.

Step #2: Assume P (n) is true for n = k, and show that P (n) is true for n = k + 1

i.e., Assume that (1 + x)k ≥ 1 + kx for some natural number k, and show that

(1 + x)k+1 ≥ 1 + (k + 1)x

Observe:

(1 + x)k+1 = (1 + x)k (1 + x) ≥ (1 + kx) (1 + x)︸ ︷︷ ︸
by Induction Hypothesis

= 1 + kx+ x+ kx2

= 1 + (k + 1)x + kx2︸︷︷︸
kx2≥0

≥ 1 + (k + 1)x

i.e., (1 + x)k+1 ≥ 1 + (k + 1)x

Hence, (1 + x)n ≥ 1 + nx for all natural numbers n and any real number x ≥ −1

Remark: Our proof hinged on two subtle points:

First, since k is a natural number (hence greater than zero) and x2 ≥ 0 for ALL real
numbers x, it follows that kx2 ≥ 0.

Second, since it is given that x ≥ −1 (or equivalently, (1 + x) ≥ 0), the direction of the
inequality, (1 + x)k ≥ 1 + kx, is preserved when both sides are multiplied by (1 + x)
during the application of the induction hypothesis.
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9. Given that |x1 + x2| ≤ |x1|+ |x2| (the Triangle Inequality); Prove by induction that:
|x1 + x2 + x3 + . . .+ xn| ≤ |x1|+|x2|+|x3|+. . .+|xn| (the General Triangle Inequality).
(This is P (n))

Proof.

Step #1: Show that P (n) is true for n = 1.

|x1| ≤ |x1| . True.

Step #2: Assume that P (n) is true for n = k, and show that P (n) is true for

n = k + 1.

i.e., Assume that |x1 + x2 + x3 + . . .+ xk| ≤ |x1|+ |x2|+ |x3|+ . . .+ |xk| and show that

|x1 + x2 + x3 + . . .+ xk + xk+1| ≤ |x1|+ |x2|+ |x3|+ . . .+ |xk|+ |xk+1| .

Observe: |(x1 + x2 + x3 + . . .+ xk) + xk+1| ≤ |x1 + x2 + x3 + . . .+ xk|+ |xk+1|︸ ︷︷ ︸
from Triangle Inequality

≤ |x1|+ |x2|+ |x3|+ . . .+ |xk|+ |xk+1|︸ ︷︷ ︸
by Ind. Hyp.

.

i.e., |x1 + x2 + x3 + . . .+ xk + xk+1| ≤ |x1|+ |x2|+ |x3|+ . . .+ |xk|+ |xk+1| .

Hence, |x1 + x2 + x3 + . . .+ xn| ≤ |x1| + |x2| + |x3| + . . . + |xn| for all natural

numbers, n.
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