MTH 3318 Test \#1 - Solutions

Fall 2023
Pat Rossi
Name \qquad

Instructions. Fully document your work.
For problems 1-2 prove one using Mathematical Induction.

1. $1+3+5+\ldots+(2 n-1)=n^{2}$
i.e. $\sum_{i=1}^{n}(2 i-1)=n^{2} \quad($ This is $P(n))$

Proof.

Step \#1: Show that $P(n)$ is true for $n=1$
$\sum_{i=1}^{1}(2 i-1)=(2(1)-1)=1=(1)^{2} \quad$ True.
Step \#2: Assume that $P(n)$ is true for $n=k$, and show that $P(n)$ is true for $n=k+1$
i.e., Assume that $\sum_{i=1}^{k}(2 i-1)=k^{2}$ for some natural number k, and show that $\sum_{i=1}^{k+1}(2 i-1)=(k+1)^{2}$

Observe:

$\sum_{i=1}^{k+1}(2 i-1)=\underbrace{\sum_{i=1}^{k}(2 i-1)+(2(k+1)-1)=k^{2}+(2(k+1)-1)}_{\text {by Induction Hypothesis }}$

$$
=k^{2}+2 k+1=(k+1)^{2}
$$

i.e., $\sum_{i=1}^{k+1}(2 i-1)=(k+1)^{2}$

Hence, $\sum_{i=1}^{n}(2 i-1)=n^{2}$ for all natural numbers, n.
2. $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$
i.e. $\sum_{j=1}^{n} \frac{1}{(2 j-1)(2 j+1)}=\frac{n}{2 n+1} \quad$ (This is $\left.P(n)\right)$

Proof.

Step \#1: Show that $P(n)$ is true for $n=1$
$\sum_{i=1}^{1} \frac{1}{(2 i-1)(2 i+1)}=\frac{1}{(2(1)-1)(2(1)+1)}=\frac{1}{3}=\frac{(1)}{2(1)+1} \quad$ True.
Step \#2: Assume that $P(n)$ is true for $n=k$, and show that $P(n)$ is true for $n=k+1$ i.e., Assume that $\sum_{i=1}^{k} \frac{1}{(2 i-1)(2 i+1)}=\frac{k}{2 k+1}$ for some natural number k, and show that $\sum_{i=1}^{k+1} \frac{1}{(2 i-1)(2 i+1)}=\frac{k+1}{2(k+1)+1}$
i.e., $\sum_{i=1}^{k+1} \frac{1}{(2 i-1)(2 i+1)}=\frac{k+1}{2 k+3}$

Observe:

$\sum_{i=1}^{k+1} \frac{1}{(2 i-1)(2 i+1)}=\sum_{i=1}^{k} \frac{1}{(2 i-1)(2 i+1)}+\frac{1}{(2(k+1)-1)(2(k+1)+1)}$

$$
=\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)} \text { (by Induction Hypothesis) }
$$

$$
=\frac{k}{2 k+1} \cdot \frac{2 k+3}{2 k+3}+\frac{1}{(2 k+1)(2 k+3)}=\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)}
$$

$$
=\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)}=\frac{(k+1)}{(2 k+3)}
$$

i.e., $\sum_{i=1}^{k+1} \frac{1}{(2 i-1)(2 i+1)}=\frac{k+1}{2 k+3}$

Hence, $\sum_{i=1}^{n} \frac{1}{(2 i-1)(2 i+1)}=\frac{n}{2 n+1}$ for all natural numbers, n.

For problems 3-5 prove one using Mathematical Induction.
3. $1+5+9+\ldots+(4 n-3)=2 n^{2}-n$
i.e., $\sum_{i=1}^{n}(4 i-3)=2 n^{2}-n \quad$ (This is $\left.P(n)\right)$

Proof.

Step \#1: Show that $P(n)$ is true for $n=1$
$\sum_{i=1}^{1}(4 i-3)=4(1)-3=1=2(1)^{2}-(1) \quad$ True.
Step \#2: Assume that $P(n)$ is true for $n=k$, and show that $P(n)$ is true for $n=k+1$ i.e., Assume that $\sum_{i=1}^{k}(4 i-3)=2 k^{2}-k$ for some natural number k, and show that $\sum_{i=1}^{k+1}(4 i-3)=2(k+1)^{2}-(k+1)$

Equivalently, show that $\sum_{i=1}^{k+1}(4 i-3)=2 k^{2}+3 k+1$

Observe:

$$
\sum_{i=1}^{k+1}(4 i-3)=\underbrace{\sum_{i=1}^{k}(4 i-3)+4[(k+1)-3]=\left(2 k^{2}-k\right)+4[(k+1)-3]}_{\text {by Induction Hypothesis }}
$$

$$
\begin{aligned}
& =\left(2 k^{2}-k\right)+4 k+4-3 \\
& =2 k^{2}+3 k+1
\end{aligned}
$$

i.e., $\sum_{i=1}^{k+1}(4 i-3)=2 k^{2}+3 k+1$

Hence, $\sum_{i=1}^{n}(4 i-3)=2 n^{2}-n$ for all natural numbers, n.
4. $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
i.e. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad$ (This is $\left.P(n)\right)$

Proof.

Step \#1: Show that $P(n)$ is true for $n=1$.
$\sum_{i=1}^{1} i^{2}=1^{2}=1=\frac{(1)[(1)+1][2(1)+1]}{6} . \quad$ True.
Step \#2: Assume that $P(n)$ is true for $n=k$, and show that $P(n)$ is true for $n=k+1$.
i.e., Assume that $\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}$ and show that $\sum_{i=1}^{k+1} i^{2}=\frac{(k+1)[(k+1)+1][2(k+1)+1]}{6}$.
i.e., show that $\sum_{i=1}^{k+1} i^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}$

Observe:

$\sum_{i=1}^{k+1} i^{2}=\underbrace{\sum_{i=1}^{k} i^{2}+(k+1)^{2}=\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}}_{\text {by Induction Hypothesis }}=\frac{k(k+1)(2 k+1)}{6}+\frac{6(k+1)^{2}}{6}$
$=\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}=\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}=\frac{(k+1)[k(2 k+1)+6(k+1)]}{6}$
$=\frac{(k+1)\left[2 k^{2}+7 k+6\right]}{6}=\frac{(k+1)(k+2)(2 k+3)}{6}$
i.e., $\sum_{i=1}^{k+1} i^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}$

Hence, $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} ; \forall n \in \mathbf{N}$ ■
5. $\frac{n^{4}}{4}<1^{3}+2^{3}+3^{3}+\ldots+n^{3}$ all natural numbers, n. (This is $P(n)$)

Proof.

Step \#1: Show that $P(n)$ is true for $n=1$.
$\frac{(1)^{4}}{4}=\frac{1}{4}<1^{3}$
i.e., $\frac{(1)^{4}}{4}<1^{3}$. True.

Step \#2: Assume that $P(n)$ is true for $n=k$, and show that $P(n)$ is true for $n=k+1$.
i.e., Assume that $\frac{k^{4}}{4}<1^{3}+2^{3}+3^{3}+\ldots+k^{3}$
and show that $\frac{(k+1)^{4}}{4}<1^{3}+2^{3}+3^{3}+\ldots+(k+1)^{3}$
Remark: Our argument may be easier to follow if we "swap the sides" of the inequality. (i.e., if we show that: $1^{3}+2^{3}+3^{3}+\ldots+(k+1)^{3}>\frac{(k+1)^{4}}{4}$)

Observe: $\underbrace{1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}>\frac{k^{4}}{4}+(k+1)^{3}}_{\text {By our induction hypothesis }}=\frac{k^{4}}{4}+\left(k^{3}+3 k^{2}+3 k+1\right)$

$$
=\frac{k^{4}}{4}+\frac{4\left(k^{3}+3 k^{2}+3 k+1\right)}{4}=\frac{k^{4}+4 k^{3}+12 k^{2}+12 k+4}{4} \geq \frac{k^{4}+4 k^{3}+6 k^{2}+4 k+1}{4}=\frac{(k+1)^{4}}{4}
$$

i.e., $1^{3}+2^{3}+3^{3}+\ldots+(k+1)^{3}>\frac{(k+1)^{4}}{4}$

For problems 6-7, prove one using Mathematical Induction:
6. $n(n+1)$ is divisible by 2 for all natural numbers, n. (This is $P(n))$

Proof.

First, note that a natural number n is divisible by 2 if there exists a natural number m such that $n=2 m$

Step \#1: Show that $P(n)$ true for $n=1$.
$1((1)+1)=2=2 \cdot 1$
Thus, $n(n+1)$ is divisible by 2 , for $n=1$.
i.e., $1((1)+1)=2=2 \cdot 1 \quad$ True.

Step \#2: Assume that $P(n)$ is true for $n=k$, and show that $P(n)$ is true for $n=k+1$ i.e., Assume that $k(k+1)$ is divisible by 2 , and show that $(k+1)[(k+1)+1]$ is divisible by 2 .
i.e., Assume that $k(k+1)=2 m$, and show that $(k+1)(k+2)$ is divisible by 2 .

Observe: $(k+1)(k+2)=(k+1) k+(k+1) 2=\underbrace{k(k+1)+2(k+1)=2 m+2}_{\text {by Ind. Hyp. }}=$ $2(m+1)$.
i.e., $(k+1)(k+2)=2(m+1)$.
i.e., $(k+1)(k+2)$ is divisible by 2 .

Hence, $n(n+1)$ is divisible by 2 for all natural numbers, n.
7. Given that $\frac{d}{d x}\left[x^{0}\right]=0$ and $\frac{d}{d x}\left[x^{1}\right]=1$, show that $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$. \quad (This is $P(n)$).

You may use the product rule: $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$.
Proof.
Step $\# 1$: Show that $P(n)$ is true for $n=1$.
$\frac{d}{d x}\left[x^{1}\right]=1=x^{0}=x^{1-1} \quad$ True.
Step \#2: Assume that $P(n)$ is true for $n=k$, and show that $P(n)$ is true for $n=k+1$
i.e., Assume that $\frac{d}{d x}\left[x^{k}\right]=k x^{k-1}$ and show that $\frac{d}{d x}\left[x^{k+1}\right]=(k+1) x^{(k+1)-1}$
i.e., show that $\frac{d}{d x}\left[x^{k+1}\right]=(k+1) x^{k}$

Observe:

$$
\begin{aligned}
\frac{d}{d x}\left[x^{k+1}\right] & =\frac{d}{d x}\left[x^{k} \cdot x\right]=\underbrace{\frac{d}{d x}\left[x^{k}\right] \cdot x+\frac{d}{d x}[x] \cdot x^{k}}_{\text {product rule }}=\underbrace{k x^{k-1}}_{\text {Ind Hyp }} \cdot x+\underbrace{1}_{\text {given }} \cdot x^{k} \\
& =k x^{k}+x^{k}=(k+1) x^{k}
\end{aligned}
$$

i.e. $\frac{d}{d x}\left[x^{k+1}\right]=(k+1) x^{k}$

Hence, $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$ for all natural numbers n.

For problems 8-9, prove one using Mathematical Induction:
8. $(1+x)^{n} \geq 1+n x$ for any natural number n and any real number $x \geq-1$.
(This is $P(n)$)

Proof.

Step \#1: Show that $P(n)$ is true for $n=1$
$(1+x)^{1}=1+x \geq 1+(1) x \quad$ True.
Step \#2: Assume $P(n)$ is true for $n=k$, and show that $P(n)$ is true for $n=k+1$ i.e., Assume that $(1+x)^{k} \geq 1+k x$ for some natural number k, and show that $(1+x)^{k+1} \geq 1+(k+1) x$

Observe:

$(1+x)^{k+1}=\underbrace{(1+x)^{k}(1+x) \geq(1+k x)(1+x)}_{\text {by Induction Hypothesis }}=1+k x+x+k x^{2}$
$=1+(k+1) x+\underbrace{k x^{2}}_{k x^{2} \geq 0} \geq 1+(k+1) x$
i.e., $(1+x)^{k+1} \geq 1+(k+1) x$

Hence, $(1+x)^{n} \geq 1+n x$ for all natural numbers n and any real number $x \geq-1$
Remark: Our proof hinged on two subtle points:
First, since k is a natural number (hence greater than zero) and $x^{2} \geq 0$ for ALL real numbers x, it follows that $k x^{2} \geq 0$.

Second, since it is given that $x \geq-1$ (or equivalently, $(1+x) \geq 0$), the direction of the inequality, $(1+x)^{k} \geq 1+k x$, is preserved when both sides are multiplied by $(1+x)$ during the application of the induction hypothesis.
9. Given that $\left|x_{1}+x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|$ (the Triangle Inequality); Prove by induction that: $\left|x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{n}\right|$ (the General Triangle Inequality). (This is $P(n)$)

Proof.

Step \#1: Show that $P(n)$ is true for $n=1$.
$\left|x_{1}\right| \leq\left|x_{1}\right| . \quad$ True.
Step \#2: Assume that $P(n)$ is true for $n=k$, and show that $P(n)$ is true for

$$
n=k+1
$$

i.e., Assume that $\left|x_{1}+x_{2}+x_{3}+\ldots+x_{k}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{k}\right|$ and show that $\left|x_{1}+x_{2}+x_{3}+\ldots+x_{k}+x_{k+1}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{k}\right|+\left|x_{k+1}\right|$.

Observe: $\underbrace{\left|\left(x_{1}+x_{2}+x_{3}+\ldots+x_{k}\right)+x_{k+1}\right| \leq\left|x_{1}+x_{2}+x_{3}+\ldots+x_{k}\right|+\left|x_{k+1}\right|}_{\text {from Triangle Inequality }}$
$\leq \underbrace{\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{k}\right|+\left|x_{k+1}\right|}_{\text {by Ind. Hyp. }}$.
i.e., $\left|x_{1}+x_{2}+x_{3}+\ldots+x_{k}+x_{k+1}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{k}\right|+\left|x_{k+1}\right|$.

Hence, $\left|x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{n}\right|$ for all natural
numbers, n.

