MTH 4441 Test #2

Fall 2023

Pat Rossi	Name
1. Define - Cy	relic group
2. Define - Di	rect Product of Groups $(G, *_G)$ and $(H*_H)$
3. Define - Iso	m pmorphism
4. Prove or	Disprove: $(\mathbb{R}, +)$ is a cyclic group

5. Prove or Disprove: $(\mathbb{Q}, +)$ is a cyclic group

6. Compute the sum of the elements (5,2) and (4,2) in the group $\mathbb{Z}_7 \times \mathbb{Z}_4$

7. Given the group table for (G, *), find all of the subgroups of (G, *) and justify your answers. Draw a subgroup diagram for (G, *).

*	e	$\mid a \mid$	b	c	d
\overline{e}	e	a	b	c	d
a	a	b	c	d	e
b	b	c	d	e	\overline{a}
c	c	d	e	\overline{a}	b
d	d	e	a	b	c

8. Construct the group table for (U_7,\odot) , and then find all of the subgroups of (U_7,\odot) and justify your answers. Draw a subgroup diagram for (U_7,\odot) . (Recall: $U_7=\{1,2,3,4,5,6\}$)

9. Construct the group table for (\mathbb{Z}_6, \oplus) , and then find all of the subgroups of (\mathbb{Z}_6, \oplus) and justify your answers. Draw a subgroup diagram for (\mathbb{Z}_6, \oplus) .

10. Construct the group table for $(\mathbb{Z}_3 \times \mathbb{Z}_2, \oplus)$, and then find all of the subgroups of $(\mathbb{Z}_3 \times \mathbb{Z}_2, \oplus)$ and justify your answers. Draw a subgroup diagram for $(\mathbb{Z}_3 \times \mathbb{Z}_2, \oplus)$.

11. With reference to Exercises 9and10, Define an isomorphism from (\mathbb{Z}_6, \oplus) to $(\mathbb{Z}_3 \times \mathbb{Z}_2, \oplus)$ and prove that $(\mathbb{Z}_6, \oplus) \cong (\mathbb{Z}_3 \times \mathbb{Z}_2, \oplus)$

12. (Extra - 5 pts) Calculate the order of the element (4,9) in the group $\mathbb{Z}_{18} \times \mathbb{Z}_{12}$

13. (Extra - 5 pts) Calculate the order of the element (8,6,4) in the group $\mathbb{Z}_{18} \times \mathbb{Z}_9 \times \mathbb{Z}_8$