Exercises Involving Real Numbers \#4 - Solutions

Fall 2005

Pat Rossi
Name \qquad

Instructions. Prove the following:

1. There exists a rational number between any two distinct real numbers.
(i.e., If $x, y \in \mathbf{R}$ with $x \neq y$, then \exists a rational number between x and y.)

Proof. Let the hypothesis be given. (i.e., Let $x, y \in \mathbf{R}$ with $x \neq y$.)
Without loss of generality, $x<y$
$\Rightarrow \exists \varepsilon \in \mathbf{R}$ with $\varepsilon>0$ such that $y-x=\varepsilon$.
By the Axiom of Archimedes, $\exists N \in \mathbf{N}$ such that $N \varepsilon>1$
$\Rightarrow N y-N x=N \varepsilon>1$
i.e., $N y-N x>1$
$\Rightarrow \exists M \in \mathbf{Z}$ such that $N x<M<N y$
$\Rightarrow x<\frac{M}{N}<y$
Note that since $\frac{M}{N}$ is the quotient of integers (denominator non-zero), $\frac{M}{N} \in \mathbf{Q}$
Hence, \exists a rational number between x and y.

Corollary 1 There exists a rational number between any two distinct rational numbers.

Corollary 2 There exists a rational number between any two distinct irrational numbers.
2. There exists an irrational number between any two distinct real numbers.
(i.e., If $x, y \in \mathbf{R}$ with $x \neq y$, then \exists an irrational number between x and y.)

Proof. Let the hypothesis be given. (i.e., Let $x, y \in \mathbf{R}$ with $x \neq y$.)
Without loss of generality, $x<y$
$\Rightarrow \exists \varepsilon \in \mathbf{R}$ with $\varepsilon>0$ such that $y-x=\varepsilon$.
By the Axiom of Archimedes, $\exists K \in \mathbf{Q}^{c}$ such that $K \varepsilon>2$
$\Rightarrow K y-K x=K \varepsilon>2$
i.e., $K y-K x>2$
$\Rightarrow \exists M \in \mathbf{Z}$ with $M \neq 0$ such that $K x<M<K y$
$\Rightarrow x<\frac{M}{K}<y$
Note that since $\frac{M}{K}$ is the quotient of a non-zero rational and an irrational, $\frac{M}{K} \in \mathbf{Q}^{c}$
\exists an irrational number between x and y.)

Corollary 3 There exists an irrational number between any two distinct rational numbers.

Corollary 4 There exists an irrational number between any two distinct irrational numbers.
3. Given a rational number z and any irrational number x, there exists an irrational number y such that $x+y=z$.

Proof. Let the hypothesis be given. (i.e., Let $z \in \mathbf{Q}$ be given, and suppose that $x \in \mathbf{Q}^{c}$.)

Let $y \in \mathbf{Q}^{c}$ be given by $y=z-x$.
(Note that since y is the difference of an irrational and a rational, $y \in \mathbf{Q}^{c}$.)
Observe: $x+y=x+(z-x)=z$.
i.e., $x+y=z$

