Fall 2005

Pat Rossi

Name _____

Instructions. Prove the following:

1. There exists a rational number between any two distinct real numbers.

(i.e., If $x, y \in \mathbf{R}$ with $x \neq y$, then \exists a rational number between x and y.)

Proof. Let the hypothesis be given. (i.e., Let $x, y \in \mathbf{R}$ with $x \neq y$.)

Without loss of generality, x < y

 $\Rightarrow \exists \varepsilon \in \mathbf{R} \text{ with } \varepsilon > 0 \text{ such that } y - x = \varepsilon.$

By the Axiom of Archimedes, $\exists N \in \mathbf{N}$ such that $N\varepsilon > 1$

$$\Rightarrow Ny - Nx = N\varepsilon > 1$$

- i.e., Ny Nx > 1
- $\Rightarrow \exists M \in \mathbf{Z} \text{ such that } Nx < M < Ny$

$$\Rightarrow x < \frac{M}{N} < y$$

Note that since $\frac{M}{N}$ is the quotient of integers (denominator non-zero), $\frac{M}{N} \in \mathbf{Q}$ Hence, \exists a rational number between x and y.

Corollary 1 There exists a rational number between any two distinct rational numbers.

Corollary 2 There exists a rational number between any two distinct irrational numbers.

2. There exists an irrational number between any two distinct real numbers.

(i.e., If $x, y \in \mathbf{R}$ with $x \neq y$, then \exists an irrational number between x and y.) **Proof.** Let the hypothesis be given. (i.e., Let $x, y \in \mathbf{R}$ with $x \neq y$.) Without loss of generality, x < y $\Rightarrow \exists \varepsilon \in \mathbf{R}$ with $\varepsilon > 0$ such that $y - x = \varepsilon$. By the Axiom of Archimedes, $\exists K \in \mathbf{Q}^c$ such that $K\varepsilon > 2$ $\Rightarrow Ky - Kx = K\varepsilon > 2$ i.e., Ky - Kx > 2 $\Rightarrow \exists M \in \mathbf{Z}$ with $M \neq 0$ such that Kx < M < Ky $\Rightarrow x < \frac{M}{K} < y$ Note that since $\frac{M}{K}$ is the quotient of a non-zero rational and an irrational, $\frac{M}{K} \in \mathbf{Q}^c$

 \exists an irrational number between x and y.)

Corollary 3 There exists an irrational number between any two distinct rational numbers.

Corollary 4 There exists an irrational number between any two distinct irrational numbers.

3. Given a rational number z and any irrational number x, there exists an irrational number y such that x + y = z.

Proof. Let the hypothesis be given. (i.e., Let $z \in \mathbf{Q}$ be given, and suppose that $x \in \mathbf{Q}^{c}$.)

Let $y \in \mathbf{Q}^c$ be given by y = z - x.

(Note that since y is the difference of an irrational and a rational, $y \in \mathbf{Q}^{c}$.)

Observe: x + y = x + (z - x) = z.

i.e., $x + y = z \blacksquare$