MTH 4422 Midterm Study Guide - Solutions
SPRING 2023

Pat Rossi Name

Instructions. Answer the following questions thoroughly.

1. Explain the idea behind Newton’s Method for solving the equation f(z) = 0, using the
Taylor’s Series approach.

Newton’s Method is used to solve equations of the form f(z) = 0, where f(z) is a
differentiable function, (i.e., We're looking for the value of x such that f(x) = 0.)
Suppose that zg is our initial approximation to z. The Taylor Series expansion of f(x)
with center xg is given by:

f (@) = f (o) + [ (20) (x — w0) + f" (w0) ——5——
Since x is such that f (z) = 0, this becomes:

0= f(wo) + (o) (x — m0) + £ o) T2l g g ) T 100

If our first approximation is close to the solution z, then (x — ) will be small, and
consequently, (z — z0)” and (z — x0)* and (z — x0)" will be very small. This means
that we can ignore the terms of higher degree. Therefore we have:

0~ f(z0) + f (w0) (x — 20)
= —f (zo) = f' (w0) (* — 20)

Or, x =~ xg —

Since the right side of the equation is an approximation of x, we give this approximation
of z the name x;.(our initial approximation of x was zy).

ie., x1 =x— f,(é%))

Note that this approximation of x is formulated in terms of zy the previous approxi-
mation of x.

Continuing in this fashion, if z, is our current approximation of x, then our next
approximation of x will be given by:

Tpt+1 = Tn — J{/((J;;))

We repeat this iterative process until two successive approximations differ by less than
our tolerance, TOL.



2. Explain the idea behind Newton’s Method for solving the equation f(z) = 0, using the
Geometric approach.

Newton’s Method solves equations of the form: f(z) = 0, where f(z) is a differentiable
function. (Note that x is the solution to the equation f (z) = 0.)

Consider the line tangent to the graph of y = f(x), at the point (zo, f (x)) . Geomet-
rically, Newton’s Method is based on the supposition that if x( is a reasonably good
initial approximation of x, then x1, the point at which this tangent crosses the z-axis,
is closer to z than the original approximation, xy is to x. The situation is depicted
below:

=f
Y=t (% F50)

Since x1, the point of intersection of the line tangent and the x-axis, is closer to x than
is the current approximation xy, we use x; as the next approximation of x.

To solve for x1, we observe that the points (x1,0) and (xg, f (x0)) are points on a line

whose slope is f’ (z9) . Using the slope formula we get:

- 0—f@) = (1 — @) = [ (o) _ [ (@o)

P— T () T ()

[ (z0)

This formula can be generalized so that given the n' approximation z,,, the (n + 1)
approximation is given by:

n

We repeat this iterative process until two successive approximations differ by less than
our tolerance, TOL.



3. Explain how and why the Bisection Algorithm (for solving f(z) = 0) works.

The Bisection Algorithm solves equations of the form: f(z) = 0, where f(z) is any
continuous function which has at least one (real) root. As input, the algorithm requires
two values of z (z = @ and x = b with a < b) such that f (a) and f (b) are of opposite
sign. If these conditions are satisfied, the Intermediate Value Theorem guarantees the
existence of a value, © = xy with a < xy < b, such that f(z,) = 0.

(In the context of this explanation, x, is the solution of the equation f(x) = 0 that we
seek.)

Said another way: If f(z) is continuous, then the graph of f (z) is one connected piece.
Furthermore, if f (a) and f (b) are of opposite sign, then in order for that graph (which
is one connected piece) to get from the point (a, f (a)) on one side of the z-axis to the
point (b, f (b)) on the other side of the x-axis, it has to cross the x-axis at some point
(x0,0) in between. This is the point at which f(x) = 0.

The situation is shown below:

(a, f(a)
y =f(x)

®
(b, f(b))

(By the way, in order to determine whether f (a) and f (b) are of opposite sign, we
compute the product f(a)- f(b) . The values f (a) and f (b) are of opposite sign
exactly when their product is negative.)

Given that we have a continuous function, f(z), and z-values, z = a and * = b
such that f (a) and f (b) are of opposite sign, we proceed by computing the midpoint,

¢ = =2 of the interval [a,b].



Exactly one of the following three statements must be true.

i. f(e)=0.
In this case, ¢ is the value that we seek (i.e. ¢ = x) So if this occurs, we print
the solution and terminate the program.

ii. f(a) and f (c)are of opposite sign.
In this case, the solution xg, is in the interval [a,¢| (shown below). Discard the
interval [c, b] by making the following assignments: a; = a and b; = c.

(a, f(a)

f(xo) =0

y =f(x)

(b, f(b))

iii. f(a) and f (c)are of like sign.

In this case, the solution zg, is in the interval [c,b] (shown below). Discard the
interval [a, ¢] by making the following assignments: a; = ¢ and b; = b.

(a ()

f(x,) = 0
y =f(x)

(b, f(b))




After forming the interval [a1, b;], compute the midpoint ¢; = % We follow the
same “three step” procedure with this new interval, testing to see whether

1. f (Cl) =0
ii. f(ay) and f(c¢;) are of opposite sign

iii. f(ay) and f(¢p) are of like sign

This iterative process is continued, with each new interval [a,,b,] being one half the
length of its predecessor. The procedure stops when either f(c,) = 0, or when |b,, — a,|
is less than the maximum error. When this stage is reached (i.e., |b, — a,| < TOL), we
somewhat arbitrarily let our solution be given by ¢, = % We can do this because
when |b, — a,| < TOL, ANY point in the interval is a good approximation of xy. The
reason for this is that since the interval contains x(, the distance between xy and any
point in the interval is less than the length of the interval, which in turn, is less than
maximum error, TOL.

i ® i i
a X G b,
g
emor = X, — G| J
< b, -3 g
< TOL >



4. Explain how and why the Fixed Point Algorithm (for solving f (p) = p) works.

The Fixed Point Algorithm solves equations of the form f (p) = p, where f(z) is a
differentiable function whose graph intersects the line y = . The algorithm is based
on the assumption that if p, is an approximation of the fixed point, then p, 1 = f (pn)
will be a better approximation of the fixed point. If | f' (x)| < 1 throughout an interval
containing the fixed point, p, then this assumption is valid, as the diagram below shows.

If | f' (z1)] > 1 throughout an interval containing the fixed point, p, then the sequence
of successive approximations diverges, (i.e., each approximation tends to be farther
from the fixed point than its predecessor. See below)

If |f'(x)| < 1 throughout a region containing the fixed point, p, then we generate a
sequence of approximations p,11 = f (p,) until a pair of successive approximations
differs by less than TOL. We let p, 1 be our approximation to the fixed point p.



5. Explain how LaGrange Polynomials are constructed to approximate the function whose
data points include (zo, f (z0)), (x1, f (1)), ..., (2, f (2,)) , and explain why this works.

Given the data points (zo, f (z0)), (21, f (z1)) ..., (Tn, f (z,)) , from an unknown func-
tion f (z), with o < x; < ... < m,, our goal is to create a polynomial P (z) which
closely approximates f (z). (Specifically, we want P (x) ~ f(x) for all values of x
between x = xy and x = x,,.)

In our attempt to force P (z) to closely approximate f (z), we will construct P (z) in
such a way that P (z) agrees with f (z) at all of the data points. (i.e., P (z;) = f (z;) for
i=0,1,2,...,n.) Here’s how we do it.

Given the data points (zo, f (20)), (z1, f (1)), ..., (@n, f (z4)), we define the i de-
gree LaGrange polynomial P () to be given by:

P () = Lno () f (o) + Ly () f (1) + . 4 L () f (20)

) _ (z—zmo)(@—z1)...(x—2i—1) (x—Tif1)...(T—Tn)
where L"” ([L’) T (wi—zo)(wi—w1). (@i—mi—1) (i—Ti41) - (Ti—Tn) |

Since L, ; (z) is an n'™ degree polynomial and f (x;) is a constant for i = 0,1,2,...,n,
the term L, ; (z) f (x;) is an n'™ degree polynomial. Hence, P (x) is the sum of n'
degree polynomials, and is therefore and n'" degree polynomial itself.

Note that L, ; (z) = 1 when x = w;. This is because for every factor (z — z;) in the
numerator, there is a corresponding factor (z; — x;) in the denominator, and vice versa.
When L, ; (x) is evaluated at © = z;, the factors in numerator and denominator are
identical.

Note also that L,,; (z;) = 0, when j # i. This is because (z — z;) is a factor of L, ; ().

Consequently,

P (z;) = Lno (i) f (x0) + L (3) f (21) + ...+ Ly (23) f (25) + ...+ L (23) f (20)

That is, P (z;) = f (z;)

The polynomial agrees with f (z) at all of the data points.



6. Describe the Trapezoidal Method for integration, and explain why it works.

Essentially, we can think of f; f (z)dx as the area between the graph of f (z) and
the z-axis, over the interval [a,b]. As a first approximation to this area, rectangles
can be inscribed inside the region. To do this, we partition the interval [a,b] into n
subintervals of width h = I’_T“ Above each subinterval we create a rectangle whose base
rests on the x-axis, and whose top intersects the graph of f (z). This is shown below.
To approximate the area, and hence the integral, we add up the areas of the rectangles.
Thus, fab f(@)de ~ " | f(x;)h. There will be “considerable” error associated with
this method, since the tops of the rectangles don’t conform precisely to the contour of
the graph. (See the picture below.)

y =f(x)

| (%, f(x)

To improve on the accuracy, we inscribe trapezoids, instead of rectangles, inside the
region. We do this as follows: For + = 0,1,2,...,n, we define x; = a + ih and plot
the points (x;, f (z;)) . We connect adjacent points, (z;, f (x;)) and (z;11, f (z;41)) , for
1=20,1,2,...,n — 1, with line segments. These line segments will be the tops of the
trapezoids. (See the picture below.) For i = 1,2,...,n,the area of the i*" trapezoid

wh (the average of the heights times the base). To approximate the area

is
between the graph of f (z) and the z-axis, and hence the value of fab f (z) dz, we add
up the areas of the trapezoids. Thus we have:

/ f(x)de ~ Z f (%—1)2—1— f (xz)h

. J/
i=1 v

area of ith trapezoid

Since the tops of the trapezoids conform more closely to the contour of the graph of
f (z) than do the tops of the rectangles, we get a better approximation. (See the
picture below.)



Y= (X _1, (6 _0)) (%, ()
/ﬁ Xi_1, T(Xi 1)) (%, TO%

d \\é./";

a=X x, X Xi_1 X x,=b
< >
\ h

We would suspect that if we simulate the limit process by letting h — 0, that we
would eventually get two successive approximations that differ by less than TOL, and
we would let the last approximation be our approximation to the integral. However,
this is will not be the case.

Initially, our approximations will improve as we decrease the value of h. But eventually,
we will reach the point where h assumes an optimal value. If we make h smaller than its
optimal value, the accuracy of our approximations will actually become worse. (The
accuracy gained by making h smaller will be more than offset by the roundoff and
truncation error associated with the increased number of arithmetic operations that
goes hand in hand with a smaller value of h.)

Consequently, we will approximate fab f (z) dz by computing > | Wh, using

the optimal value of h.

Finally, in order to help reduce roundoff and truncation error, we minimize the total
number of arithmetic operations as follows:

Instead of approximating fab f (x) dx by:

s S s,

(i.e., multiplying [f (z;_1) + f (x;)] by h and then dividing by 2 for i = 0,1,2,...,n),
we approximate fab f (z) dz by:

(i [f (i) + f (22)]) 5

(i.e., we compute the entire sum ., [f (x;—1) + f (2;)] and then multiply once by %)



7. Describe Simpson’s Method for approximating fab f () dx, and explain why it works.

The idea behind Simpson’s Method is that instead of using line segments to conform
to the contour of the graph of f (z), as in the Trapezoidal Method, we use portions
of a parabola (actually portions of the graph of a polynomial of degree three or less).
An important fact used in this method, is that given any polynomial p (x) of degree
three or less, over any interval [a, a + 2h] , the integral [ “+20 ¢ (2) dz can be computed
in terms of the value of p(z) at the value of the endpoints, a and a + 2h, and the
midpoint, a + h, as follows:

a+2h h
/ F(e)dr =2 [F (a) +4F (a4 h) +  (a+ 20)].

To approximate f ’ f(z)dz using Simpson’s Method, we divide the interval [a, b] into
2n subintervals of length h = .Fori=0,1,2,...,2n, we define z; = a 4+ ih and
group adjacent subintervals 1nt0 palrs as follows:

\[$0, r1], [21, o] ; [$27 w3, [73, $4l; ce §l$2n—2, Ton-1], [Ton—1, Tan].
Vv TV Vv
first pair second pair nthpair

Over each pair of subintervals, we approximate the integral ff;(f_l) f (z)dz, by com-

puting the integral of p (z) (where p () is a polynomial of degree 3 or less that contains
the points (xQ(i_l), f (:cg(i_l))) (2251, f (z2i-1)) , and (a9, f (22;)) , using the formula:

/5’*’22' p(x)dr = g [f (332(171)) +4f (w2i1) + f (3321)} .
T2(i-1)

(A subtle point here, is that we're setting p (x;) = f (z;) for each z;,7 =0,1,2,...,2n.)

Thus:
fab f(x)de = fmo (x)dx + f r)dr + ...+ f{ii"ﬂ p(z)dx
= 2[f(zo) +Af (x1) + [ (z2)] + 2 [f (w2) +4f (w3) + f (za)] +
.t % [f (I2(n71)) + 4f (xQn—l) + f (xQR):| :
ie., fabf(x 21f (wagmr)) + A4S (m2i1) + f (2)]

=1

We do not compute successive approximations of fab f (z) dz, using increasingly smaller

values of h. Instead, we approximate fab f (z) dx = using the optimal value of h. Our
reason for doing this is as follows:

Initially, our approximations will improve as we decrease the value of h. But eventually,
we will reach the point where h assumes an optimal value. If we make h smaller than its

10



optimal value, the accuracy of our approximations will actually become worse. (The
accuracy gained by making h smaller will be more than offset by the roundoff and
truncation error associated with the increased number of arithmetic operations that
goes hand in hand with a smaller value of h.)

Finally, in order to help reduce roundoff and truncation error, we minimize the total
number of arithmetic operations as follows:

Instead of approximating fab f (z) dz by:

n

Z% [f ($2(¢—1)) +4f (z2i1) + f (@z)]

i=1
(i.e., multiplying [f (xg(i,l)) +4f (x9i-1)+ f (xm)] by % fori=0,1,2,...n),

we approximate f: [ (z) dzx by:

<Z [f (zai—1)) + Af (z2i1) + f ($21)}) a

i=1
(i.e., we compute the entire sum Z [f (z2g—1)) + Af (z2i1) + f (x2)] and then mul-
i=1
tiply once by %).

11



8. Given the data points (—1,—-2),(1,2),(2,7), compute the LaGrange Polynomial that
agrees with the data points.

We have 3 data points, so we should have a polynomial of degree 2.

The LaGrange Polynomial is of the form:
P (x) = Lo (v) f (w0) + Loy (v) f (21) + Lo () f (2)

where (x;, f (x;)) is the i data point and Lo ; () is the polynomial of degree 2 that is
the cofactor of f (z;).

Thus,

_ ea)@m) _ (e-)@-@) 1.2 1. 1
Lao (%) = Gozamomen) = H-OND)-@) — 6¢ — 27 T3

_ @-w)@—) _  (@a—(-))a—(2) _ 1.2, 1
Loy (7) = Grad)m—en = (=CON@-@) = 2% +ta7+1
_ @w)a—m1) _  (@—(-)a—-(1) _ 1.2 1
Lap (%) = Grad)(emma) = @-CON@-) — 3% ~ 3

The LaGrange Polynomial is:

P (x) = Lao (z) f (x0) + Lo (z) f (21) + Log (z) f (22)

— (7~ do+ D D+ (R e ) @)+ (- ) (D) =+ 20—

ie, P(z)=a2?+2zx—1

12



9. Given the data points (—2,—46),(—1,—14),(0,—4),(1,2),(2,22) compute the La-
Grange Polynomial that agrees with the data points.

We have 5 data points, so we should have a polynomial of degree 4.

The LaGrange Polynomial is of the form:

P (x) = Lo (z) f (x0) + Laa (z) f (21) + Lo (x) f (22) + Lag (x) f (23) + Laa (x) f (24) ,

where (x;, f (x;)) is the i data point and L, ; () is the polynomial of degree 4 that is

the cofactor of f (z;).

Thus,
— _(zzz)(@—wa)(z—as) (2 —24) (z—(=1))(z=0)(z—1)(z—2)
Lao () = (zo—z1)(zo—z2)(wo—w3)(zo—za) — ((=2)=(=1))((=2)-0)((=2)-1)((-2)-2)
= 2—14x4 — %x?’ — iﬁ + 1—12x

(z—zo)(z—22)(z—23)(x—24)

(2= (=2))(z=0)(z—1)(z—2)

Lar (#) = G oo an o -e) — DD 00T~

= —%x‘l + %x3 + %xZ — %a:
I (a:) _ _(@—m)@—m)(z—zs)(@—z4) _ (2=(=2)(@@—(=1))(z-1)(z=2) _
4,2 (z2—z0)(z2—21) (T2 —23)(T2—T4) (0—(=2))(0—(-1))(0-1)(0-2)
I (m) _ _(@—m)@—m)(z—z2)(@—z4) _ (2=(=2))(@—(=1))(z=0)(z—2) _
4,3 (z3—z0)(3—21)(23—22)(T3—T4) (1-(=2))(1—(-1))(1-0)(1-2)

(z—z0)(x—21)(x—22) (T—13)

—2))(@—=(=1))(z=0)(z—1)

Lya (I) = (@a—wo)(za—a1)(xs—a2)(wa—23)

1

The LaGrange Polynomial is:

1.4, 1.3 1.2 1
=T t 33T 24 L 12

)
(2—-(=2)(2=(-1))(2-0)(2-1)

1.4 5.2
1T 1 +1

—_1,4_1,3,2,2,2
x 6x+3x+3x

6

P (x) = Lo (z) f (w0) + Laa (x) f (21) + Lo (@) f (22) + Las (@) f (23) + Laa (x) f (24)

~ (ot~
b (3ot = 307 1) (-0) + (-

— 2—14x2 + 1—12x) (—46) + (—éx“ + %:103 + %962 -

tat — 2ot + 227 + 22) (2)

+ (2—14x4 + %x:” — iﬁ — %x) (22)

=323 — 222+ 51 —4

ie., P(r)=3x%— 22?45z —4

13
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10.
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)
P(1)=3(1)°-2(1)°+5(1)—4=2
)
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w
—
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w
|

2(2)°+5(2) —4=22

With reference to the preceding exercise, we had 5 data points and yet the LaGrange
Polynomial was only of degree 3. (We would expect that the LaGrange Polynomial
that fits all five data points would have degree 4.) How can we explain this?

Our LaGrange Polynomial P (z) = 323 — 222 + 5x — 4 of degree 3 agrees with the
unknown function at all 5 data points. Under normal circumstances, we would need a
LaGrange Polynomial for this to be true. So apparently, the fifth data point provides
superfluous information about the unknown function f (z). A quick check using any
four of the data points will reveal that the LaGrange Polynomial P (z) = 323 — 222 +
5 — 4 can be obtained from the four data points that we have randomly chosen.
This also implies that the fifth “cofactor” is a linear combination of the other four
“cofactors.” So again, the fifth data point provides superfluous information about the
unknown function f (x). So the five data points are all points on the graph of the same
3'4 degree polynomial, P (z) = 323 — 222 + bz — 4.
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