MTH 1126 - Test \#4 - Version 1
 Spring 2022

Pat Rossi
Name \qquad

Show CLEARLY how you arrive at your answers.

In Exercises 1-2, Determine convergence/divergence. If the integral converges, find its value.

1. $\int_{6}^{\infty} \frac{1}{(x-2)^{\frac{3}{2}}} d x=$
2. $\int_{2}^{6} \frac{1}{(x-2)^{\frac{1}{2}}} d x=$
3. Determine convergence/divergence of the sequence whose $n^{\text {th }}$ term is given by: $a_{n}=\cos \left(\frac{n \pi}{2}\right)$. (i.e., Determine convergence/divergence of the sequence $\left\{\cos \left(\frac{n \pi}{2}\right)\right\}_{n=1}^{\infty}=$ $\{0,1,0,-1, \ldots\}$.)
4. Determine convergence/divergence of the given series. (Justify your answer!) If the series converges, determine its sum.
$\sum_{n=1}^{\infty} \frac{1}{n^{2}+5 n+6}=$

In Exercises 5-6, determine convergence/divergence of the given series. (Justify your answers!) If the series converges, determine its sum.
5. $1+\frac{3}{5}+\frac{9}{25}+\frac{27}{125}+\ldots+\left(\frac{3}{5}\right)^{n}+\ldots$
6. $\sum_{n=1}^{\infty} \frac{n}{n+5}=$

In Exercises 7-8, determine convergence/divergence of the given series. (Justify your answers!)
7. $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}-1}$
8. $\sum_{n=1}^{\infty} \frac{1}{n+3}$

For exercises 9-10, choose one. (You can do the other for extra credit. (10 points))
9. Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty}\left(\frac{n+2}{2 n+1}\right)^{n}$
10. Determine convergence/divergence of the given series. (Justify your answer!) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$

Extra Wow! (10 points)
Determine convergence/divergence of the given series. (Justify your answer!)

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{2}+\ldots
$$

