
MTH 3311 Test #3
Spring 2021

Pat Rossi Name

Show CLEARLY how you arrive at your answers.

1. Solve the Differential Equation: y′′ − 2y′ − 8y = −40 cos (x)− 10 sin (x)

First, we must find the complementary solution, yc

We consider the complementary equation y′′ − 2y′ − 8y = 0

Using differential operator notation, this becomes:

D2y − 2Dy − 8y = 0

⇒
(
D2 − 2D − 8

)︸ ︷︷ ︸
φ(D)

y = 0

⇒ φ (D) = D2 − 2D − 8

We find the roots of the auxilliary equation: φ (m) = 0

⇒ m2 − 2m− 8︸ ︷︷ ︸
φ(m)

= 0

⇒ (m+ 2) (m− 4) = 0

⇒ m1 = −2 and m2 = 4

Our Complementary Solution is yc = c1e
m1x + c2e

m2x

⇒ yc = c1e
−2x + c2e

4x

Next, we find a particular solution yp to the equation:

y′′ − 2y′ − 8y = −40 cos (x)− 10 sin (x)

Since the right hand side is a linear combination of sines and cosines, we guess that
the particular solution is of the form:

y = c1 cos (x) + c2 sin (x)

y = c1 cos (x) + c2 sin (x)

⇒ y′ = −c1 sin (x) + c2 cos (x)

⇒ y′′ = −c1 cos (x)− c2 sin (x)


we plug these into the equation:
y′′ − 2y′ − 8y = −40 cos (x)− 10 sin (x)



y′′ = −c1 cos (x) −c2 sin (x)
−2y′ = −2c2 cos (x) +2c1 sin (x)
−8y = −8c1 cos (x) −8c2 sin (x)

y′′ − 2y′ − 8y = (−c1 − 2c2 − 8c1) cos (x) + (−c2 + 2c1 − 8c2) sin (x) = −40 cos (x)− 10 sin (x)

i.e., (−c1 − 2c2 − 8c1) cos (x) + (−c2 + 2c1 − 8c2) sin (x) = −40 cos (x)− 10 sin (x)

⇒ (−9c1 − 2c2) cos (x) + (2c1 − 9c2) sin (x) = −40 cos (x)− 10 sin (x)

Equating the coeffi cients of sin (x) and cos (x) on both sides of the equation, we have:

−9c1 − 2c2 = −40 and 2c1 − 9c2 = −10

Solving these equations simultaneously, we have:

−9c1 − 2c2 = −40 −18c1 − 4c2 = −80
2c1 − 9c2 = −10 ⇒ 18c1 − 81c2 = −90

− 85c2 = −170

i.e., −85c2 = −170⇒ c2 = 2

Plugging this value of c2 into the equation 2c1 − 9c2 = −10 yields: 2c1 − 9 (2) = −10

⇒ 2c1 = 8

⇒ c1 = 4

Thus, our particular solution y = c1 cos (x) + c2 sin (x) becomes:

yp = 4 cos (x) + 2 sin (x)

Our General Solution is yg = 4 cos (x) + 2 sin (x)︸ ︷︷ ︸
yp

+ c1e
−2x + c2e

4x︸ ︷︷ ︸
yc
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2. Solve the Differential Equation: x2y′′ − 4xy′ + 4y = 3x2 + 4

First, find the solution to the complementary equation x2y′′ − 4xy′ + 4y = 0

Our strategy is to seek solutions of the form:

y = xλ

⇒ y′ = λxλ−1

⇒ y′′ = λ (λ− 1)xλ−2 =
(
λ2 − λ

)
xλ−2

Plugging these into the complementary equation x2y′′ − 4xy′ + 4y = 0, we have:

x2
(
λ2 − λ

)
xλ−2 − 4xλxλ−1 + 4xλ = 0

⇒
(
λ2 − λ

)
xλ − 4λxλ + 4xλ = 0

⇒
(
λ2 − λ

)
− 4λ+ 4 = 0

⇒ λ2 − 5λ+ 4 = 0

⇒ (λ− 1) (λ− 4) = 0

⇒ λ1 = 1; λ2 = 4

Our complementary solution is:

yc = c1x
λ1 + c2x

λ2 = c1x
1 + c2x

4

(Continued)
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Next, we find our particular solution

Since the right hand side of the equation is the polynomial 3x2 + 4, we guess that the
particular solution is a polynomial having only terms of the same degree that appear
on the right hand side of the original equation.

Thus, we guess that:

y = Ax2 + C

⇒ y′ = 2Ax

⇒ y′′ = 2A

To find A,B and C, we plug these into the original equation, x2y′′−4xy′+4y = 3x2+4.

This yields:

x2 (2A)− 4x (2Ax) + 4 (Ax2 + C) = 3x2 + 4

⇒ 2Ax2 − 8Ax2 + 4Ax2 + 4C = 3x2 + 4

i.e., −2Ax2 + 4C = 3x2 + 4

⇒ −2A = 3⇒ A = −3
2

Also: 4C = 4⇒ C = 1

⇒ yp = Ax2 + C = −3
2
x2 + 1

The solution to the original equation is: y = yp + yc

The solution to the original equation is: yg = −3
2
x2 + 1 + c1x+ c2x

4
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3. Solve the Differential Equation: y′′ − 3y′ + 2y = xe2x

First, we must find the complementary solution, yc

We consider the complementary equation y′′ − 3y′ + 2y = 0

Using differential operator notation, this becomes:

D2y − 3Dy + 2y = 0

⇒
(
D2 − 3D + 2

)︸ ︷︷ ︸
φ(D)

y = 0

⇒ φ (D) = D2 − 3D + 2

We find the roots of the auxilliary equation: φ (m) = 0

⇒ m2 − 3m+ 2︸ ︷︷ ︸
φ(m)

= 0

⇒ (m− 1) (m− 2) = 0

⇒ m1 = 1 and m2 = 2

Our Complementary Solution is yc = c1e
m1x + c2e

m2x

⇒ yc = c1e
1x + c2e

2x

i.e., yc = c1e
x + c2e

2x

Next, we find a particular solution yp to the equation:

y′′ − 3y′ + 2y = xe2x

Since the right hand side is NOT a polynomial, or a linear combination of sines, cosines,
and exponentials, we can NOT use the Method of Undetermined Coeffi cients.

We have to use the Method of Variation of Parameters

To do this, we form our general solution by taking our complementary solution yc =
c1e

1x + c2e
2x and replacing the arbitrary constants with functions of x.

y = A (x) ex +B (x) e2x

Since we have two arbitrary functions of x in our solution, we are allowed to impose
two restrictions on this pair of functions.
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The first restriction that we impose is that the pair of functions (A (x) , B (x)) are such
that y = A (x) ex +B (x) e2x is a solution of the equation: y = A (x) ex +B (x) e2x.

This is ALWAYS the first restriction that we impose on the pair of functions (A (x) , B (x)) .

Next, we compute the derivative of y

y = A (x) ex +B (x) e2x

y′ = A (x) ex + exA′ (x)︸ ︷︷ ︸
Product Rule

+ B (x) 2e2x + e2xB′ (x)︸ ︷︷ ︸
Product Rule

At this point, we impose the second of the two restrictions that we are allowed to
impose on the pair of functions (A (x) , B (x)) .

To rid f ′ (x) of the terms that contain derivatives of A (x) and B (x) , we impose the
restriction that the sum of the terms that contain A′ (x) and B′ (x) equals zero.

⇒ exA′ (x) + e2xB′ (x) = 0

In this case, this step yields:

y′ = A (x) ex +B (x) 2e2x

Remark: The second restriction that we imposed (Setting the sum of the terms that
contain A′ (x) and B′ (x) equal to zero) is almost always the second restriction that
we impose.

Finally, we compute y′′

y′′ = A (x) ex + exA′ (x)︸ ︷︷ ︸
Product Rule

+ B (x) 4e2x + 2e2xB′ (x)︸ ︷︷ ︸
Product Rule

Next, we plug the expressions for y, y′, and y′′ into the equation: y′′ − 3y′ + 2y = xe2x

y′′ A (x) ex + exA′ (x) + 4B (x) e2x + 2e2xB′ (x)
− 3y′ −3A (x) ex − 6B (x) e2x

+ 2y 2A (x) ex + 2B (x) e2x

y′′ − 3y′ + 2y = exA′ (x) + 2e2xB′ (x) = xe2x

i.e., exA′ (x) + 2e2xB′ (x) = xe2x

Our immediate goal is to use this equation to solve for functions A (x) and B (x) .

But we have TWO unknown functions, A (x) and B (x) , and only ONE equation.

How can we solve for these functions?

The answer is that we can still apply the second restriction that we imposed on
(A (x) , B (x)) .
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We can use the second restriction to eliminate one of the functions from the equation

Observe: exA′ (x) + 2e2xB′ (x) = xe2x

Restriction:→ − (exA′ (x) + e2xB′ (x)) = 0
e2xB′ (x) = xe2x

This yields:

⇒ e2xB′ (x) = xe2x

⇒ B′ (x) = x

⇒ B (x) =
∫
B′ (x) dx =

∫
xdx = 1

2
x2 + C2

i.e., B (x) = 1
2
x2 + C2

Now how do we solve for A (x) ?

Recall: B′ (x) = x

Perhaps the best way to solve for A (x) is to take B′ (x) = x and plug this into the
equation:

exA′ (x) + e2xB′ (x) = 0 (our restriction)

⇒ exA′ (x) + e2x · x = 0

⇒ A′ (x) + x e
2x

ex
= 0

⇒ A′ (x) + xex = 0

⇒ A′ (x) = −xex

⇒ A (x) =
∫
A′ (x) dx = −

∫
xexdx

i.e., A (x) = −
∫
xexdx

We have to use “integration by parts”to do this

−
∫

x︸︷︷︸
u

exdx︸︷︷︸
dv

= −
[
uv −

∫
vdu
]
= −

[
xex −

∫
exdx

]
= − [xex − ex]+C1 = −xex+ex+

C1

u = x dv = exdx

⇒ du
dx
= 1 ⇒

∫
dv =

∫
exdx

⇒ du = dx ⇒ v = ex

i.e., A (x) = −xex + ex + C1
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So we have established that A (x) = −xex + ex + C1 and that B (x) = 1
2
x2 + C2

Plugging these into y = A (x) ex +B (x) e2x, we have:

y = (−xex + ex + C1) e
x +

(
1
2
x2 + C2

)
e2x

This can be rewritten as:

y =
(
1
2
x2 − x

)
e2x + C1e

x + C3e
2x
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