MTH 1126 - Test #4 - Version 1 - Solutions

 ${\rm Spring}\ 2022$

Pat Rossi

Name _____

Show CLEARLY how you arrive at your answers.

In Exercises 1-2, Determine convergence/divergence. If the integral converges, find its value.

$$1. \int_{6}^{\infty} \frac{1}{(x-2)^{\frac{3}{2}}} dx = \lim_{b \to \infty} \int_{6}^{b} \frac{1}{(x-2)^{\frac{3}{2}}} dx = \lim_{b \to \infty} \int_{6}^{b} (x-2)^{-\frac{3}{2}} dx = \lim_{b \to \infty} \left[\frac{(x-2)^{-\frac{1}{2}}}{(-\frac{1}{2})} \right]_{6}^{b}$$
$$= \lim_{b \to \infty} \left[-2 (x-2)^{-\frac{1}{2}} \right]_{6}^{b} = \lim_{b \to \infty} \left[-\frac{2}{(x-2)^{\frac{1}{2}}} \right]_{6}^{b}$$
$$= \lim_{b \to \infty} \left[-\frac{2}{(b-2)^{\frac{1}{2}}} - \left(-\frac{2}{(6-2)^{\frac{1}{2}}} \right) \right] = \lim_{b \to \infty} \left[-\frac{2}{(b-2)^{\frac{1}{2}}} + \frac{2}{(6-2)^{\frac{1}{2}}} \right]$$
$$= \lim_{b \to \infty} \left[-\frac{2}{(b-2)^{\frac{1}{2}}} + \frac{2}{2} \right] = [0+1] = 1$$

i.e.,
$$\int_6^\infty \frac{1}{(x-2)^{\frac{3}{2}}} dx = 1$$
 (Integral **Converges**)

2. $\int_2^6 \frac{1}{(x-2)^{\frac{1}{2}}} dx =$

Because $\frac{1}{(x-2)^{\frac{1}{2}}}$ is discontinuous at x = 2, this is an improper integral.

$$\int_{2}^{6} \frac{1}{(x-2)^{\frac{1}{2}}} dx = \lim_{a \to 2^{+}} \int_{a}^{6} \frac{1}{(x-2)^{\frac{1}{2}}} dx = \lim_{a \to 2^{+}} \int_{a}^{6} (x-2)^{-\frac{1}{2}} dx = \lim_{a \to 2^{+}} \left[\frac{(x-2)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} \right]_{a}^{6}$$
$$= \lim_{a \to 2^{+}} \left[2 \left(x - 2 \right)^{\frac{1}{2}} \right]_{a}^{6} = \lim_{a \to 2^{+}} \left[2 \left(6 - 2 \right)^{\frac{1}{2}} - 2 \left(a - 2 \right)^{\frac{1}{2}} \right]$$
$$= \left[2 \left(2 \right) - 2 \left(0 \right)^{\frac{1}{2}} \right] = 4$$

i.e. $\int_2^6 \frac{1}{(x-2)^{\frac{1}{2}}} dx = 4$ (Integral **Converges**)

3. Determine convergence/divergence of the sequence whose n^{th} term is given by:

 $a_n = \cos\left(\frac{n\pi}{2}\right)$. (i.e., Determine convergence/divergence of the sequence $\left\{\cos\left(\frac{n\pi}{2}\right)\right\}_{n=1}^{\infty} = \{0, 1, 0, -1, \ldots\}$.)

Observe: $\lim_{n\to\infty} \cos\left(\frac{n\pi}{2}\right)$ Does Not Exist.

The logic here is that in order for the sequence to converge to some real number L, the terms of the sequence $\left\{\cos\left(\frac{n\pi}{2}\right)\right\}_{n=1}^{\infty}$ have to get arbitrarily close to L as n gets large. However, consecutive terms of the sequence will always be 1 unit apart, which means that if one term of the sequence is extremely close to L, its successor and predecessor will have to be almost 1 unit away from L.

Therefore, $\lim_{n\to\infty} \cos\left(\frac{n\pi}{2}\right)$ Does Not Exist, and consequently, the series Diverges.

The Sequence **Diverges.** $(\lim_{n\to\infty} \cos\left(\frac{n\pi}{2}\right)$ Does Not Exist)

4. Determine convergence/divergence of the given series. (Justify your answer!) If the series converges, determine its sum.

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 5n + 6} =$$

If the series converges, determine its sum. In general, there are only two types of convergent series whose sums we can compute: Geometric and "Telescoping Sum."

The series
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 5n + 6}$$
 is definitely NOT Geometric.

Maybe it can be written as a "Telescoping Sum."

So let's see if we can express $a_n = \frac{1}{n^2 + 5n + 6}$ as the difference of two terms.

$$\frac{1}{n^2 + 5n + 6} = \frac{1}{(n+2)(n+3)} = \frac{C_1}{n+2} + \frac{C_2}{n+3}$$

i.e., $\frac{1}{(n+2)(n+3)} = \frac{C_1}{n+2} + \frac{C_2}{n+3}$
$$\Rightarrow \frac{1}{(n+2)(n+3)} (n+2) (n+3) = \frac{C_1}{n+2} (n+2) (n+3) + \frac{C_2}{n_3} (n+2) (n+3)$$

$$\Rightarrow 1 = C_1 (n+3) + C_2 (n+2)$$

$$\boxed{n = -3} \Rightarrow 1 = C_2 (-1)$$

$$\boxed{\Rightarrow C_2 = -1}$$

In Exercises 5-6, determine convergence/divergence of the given series. (Justify your answers!) If the series converges, determine its sum.

5. $1 + \frac{3}{5} + \frac{9}{25} + \frac{27}{125} + \ldots + \left(\frac{3}{5}\right)^n + \ldots$

If the series converges, determine its sum. In general, there are only two types of convergent series whose sums we can compute: Geometric and "Telescoping Sum."

Notice that each term after the first term is equal to $\frac{3}{5}$ times its predecessor.

The series is geometric with ratio $r = \frac{3}{5}$

Since |r| < 1, the series converges to $\frac{1^{\text{st term}}}{1-r} = \frac{1}{1-\frac{3}{5}} = \frac{1}{\left(\frac{2}{5}\right)} = \frac{5}{2}$

The series **converges** to $\frac{5}{2}$

$$6. \sum_{n=1}^{\infty} \frac{n}{n+5} =$$

There are a few different ways that we can do this.

First, note that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n}{n+5} = 1$

Since $\lim_{n\to\infty} a_n \neq 0$, the series **diverges.**

i.e.,
$$\sum_{n=1}^{\infty} \frac{n}{n+5}$$
 diverges by the "*n*th term Test."

In Exercises 7-8, determine convergence/divergence of the given series. (Justify your answers!)

7.
$$\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}} - 1}$$

There are a few different ways that we can do this.

We can compare
$$\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}-1}$$
 to $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}}$, which is a *p*-series with $p = \frac{1}{2}$.
Hence $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ diverges.
Since $\frac{1}{\frac{n^{\frac{1}{2}}}{a_n}} < \frac{1}{\frac{n^{\frac{1}{2}}-1}{b_n}}$ and $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ diverges, $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}-1}$ diverges also, by the **Direct Com**-

parison Test.

Alternatively: Observe that
$$\lim_{n\to\infty} \left| \frac{a_n}{b_n} \right| = \lim_{n\to\infty} \left| \frac{\left(\frac{1}{n^{\frac{1}{2}}}\right)}{\left(\frac{1}{n^{\frac{1}{2}}-1}\right)} \right| = \lim_{n\to\infty} \frac{n^{\frac{1}{2}}-1}{n^{\frac{1}{2}}} = 1$$

Since $0 < \lim_{n \to \infty} \left| \frac{a_n}{b_n} \right| < \infty$, Both series "do the same thing."

Since $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}}$, is a divergent *p*-series (with $p = \frac{1}{2}$), $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}-1}$ diverges also, by the **Limit**

Comparison Test.

i.e.,
$$\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}-1}$$
 diverges by Direct Comparison and Limit Comparison with $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}}$

$$8. \sum_{n=1}^{\infty} \frac{1}{n+3}$$

There are a few ways to do this.

First, we can compare $\sum_{n=1}^{\infty} \frac{1}{n+3}$ with $\sum_{n=1}^{\infty} \frac{1}{n}$, which is the divergent Harmonic Series.

Since $\frac{1}{\underbrace{n+3}_{a_n}} < \underbrace{\frac{1}{n}}_{b_n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the Direct Comparison Test doesn't apply.

Applying the Limit Comparison Test, we have: $\lim_{n\to\infty} \left| \frac{a_n}{b_n} \right| = \lim_{n\to\infty} \left| \frac{\left(\frac{1}{n+3}\right)}{\left(\frac{1}{n}\right)} \right| = \lim_{n\to\infty} \frac{n}{n+3} = 1$

Since $0 < \lim_{n \to \infty} \left| \frac{a_n}{b_n} \right| < \infty$, Both series "do the same thing."

Since $\sum_{n=1}^{\infty} \frac{1}{n}$, is the divergent Harmonic Series, $\sum_{n=4}^{\infty} \frac{1}{n+3}$ diverges also, by the **Limit**

=

Comparison Test.

Alternatively,
$$\int_1^\infty \frac{1}{n+3} dn = \lim_{b\to\infty} \int_1^b \underbrace{\frac{1}{n+3}}_{\frac{1}{u}} \underbrace{dn}_{du} = \lim_{b\to\infty} \left[\ln(n+3)\right]_1^b$$

 $\lim_{b\to\infty} \left[\ln \left(b+3 \right) - \ln \left(1 \right) \right] = \infty$

 $\sum_{n=4}^{\infty} \frac{1}{n+3}$ diverges by the Integral Test

 $\sum_{n=4}^{\infty} \frac{1}{n+3}$ diverges by the Integral Test and by Limit Comparison with $\sum_{n=4}^{\infty} \frac{1}{n}$

For exercises 9-10, choose one. (You can do the other for extra credit. (10 points))

9. Determine convergence/divergence of the given series. (Justify your answer!)

$$\sum_{n=1}^{\infty} \left(\frac{n+2}{2n+1}\right)^n$$

The $n^{\text{th}} a_n$ is something **raised to the** n^{th} **power**, so this is a good candidate for the n^{th} **Root Test.**

Observe:
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\left(\frac{n+2}{2n+1}\right)^n} = \lim_{n\to\infty} \left(\frac{n+2}{2n+1}\right) = \lim_{n\to\infty} \frac{n}{2n} = \frac{1}{2}$$

Since $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$, the series converges. by the n^{th} Root Test.

 $\sum_{n=1}^{\infty} \left(\frac{n+2}{2n+1}\right)^n$ converges by the *n*th Root Test.

10. Determine convergence/divergence of the given series. (Justify your answer!)

$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$

The n^{th} term a_n contains a **factorial**, so this is a good candidate for the **Ratio Test**.

Observe: $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{\frac{2^{n+1}}{(n+1)!}}{\left(\frac{2^n}{n!}\right)} \right| = \lim_{n\to\infty} \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \lim_{n\to\infty} \frac{2}{n+1} = 0$ Since $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, the series **converges.**

 $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges by the **Ratio Test.**

Extra Wow! (10 points)

Determine convergence/divergence of the given series. (Justify your answer!)

$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{1}{\sqrt{n}} = 1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{2} + \dots$$

Observe: Our series fits the form: $\sum_{n=1}^{\infty} (-1)^{n+1} \underbrace{\frac{1}{\sqrt{n}}}_{a_n} = \sum_{n=1}^{\infty} (-1)^{n+1} a_n$

The terms of the series are alternately positive and negative.

Also: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$ (i.e., $\lim_{n\to\infty} a_n = 0$)

And:
$$\underbrace{\frac{1}{\sqrt{n+1}}}_{a_{n+1}} \leq \underbrace{\frac{1}{\sqrt{n}}}_{a_n}$$

By the Alternating Series Test, the series converges.

 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$ converges by the Alternating Series Test