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Name
Show CLEARLY how you arrive at your answers.

In Exercises 1-2, Determine convergence/divergence. If the integral converges, find its value
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3. Determine convergence/divergence of the sequence whose n'® term is given by:

nm

a, = COs ( 5 ) . (i.e., Determine convergence/divergence of the sequence {cos ("2—”) }211 =
{0,1,0,-1,...}.)

Observe: lim,,_, COS (%) Does Not Exist.

The logic here is that in order for the sequence to converge to some real number L, the
terms of the sequence {cos ("2—”) }:;1 have to get arbitrarily close to L as n gets large.
However, consecutive terms of the sequence will always be 1 unit apart, which means
that if one term of the sequence is extremely close to L, its successor and predecessor
will have to be almost 1 unit away from L.

Therefore, lim,,_,, cos (”2—“) Does Not Exist, and consequently, the series Diverges.

The Sequence Diverges. (lim,_. cos (%) Does Not Exist)

4. Determine convergence/divergence of the given series. (Justify your answer!) If the
series converges, determine its sum.
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If the series converges, determine its sum. In general, there are only two types
of convergent series whose sums we can compute: Geometric and “Telescoping Sum.”
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The series Z m is definitely NOT Geometric.

n=1

Maybe it can be written as a “Telescoping Sum.”

So let’s see if we can express a,, = as the difference of two terms.
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Thus, n2+én+6 = (n+2)1(n+3) = #2 - #3
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L.e., E :n2+5n+6 =3
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In Exercises 5-6, determine convergence/divergence of the given series. (Justify your an-
swers!) If the series converges, determine its sum.
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If the series converges, determine its sum. In general, there are only two types
of convergent series whose sums we can compute: Geometric and “Telescoping Sum.”

Notice that each term after the first term is equal to % times its predecessor.

The series is geometric with ratio r = %
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The series converges to g
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There are a few different ways that we can do this.

First, note that lim,,_, a, = lim,,_, #5 =1

Since lim,, .o, a, # 0, the series diverges.

o
ie., Z = diverges by the “n'h term Test.”
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In Exercises 7-8, determine convergence/divergence of the given series. (Justify your an-

swers!)

oo
7. E .
n2-—1

n=4
There are a few different ways that we can do this.
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Since 0 < lim,,_, ‘Z—:‘ < 00, Both series “do the same thing.”
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There are a few ways to do this.
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First, we can compare g n+r3 with g %, which is the divergent Harmonic Series.
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Applying the Limit Comparison Test, we have: lim, . = lim,
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< 00, Both series “do the same thing.”

o0 oo
Since Z %, is the divergent Harmonic Series, Z n+r3 diverges also, by the Limit
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For exercises 9-10, choose one. (You can do the other for extra credit. (10
points))

9.

10.

Determine convergence/divergence of the given series. (Justify your answer!)
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The n'" a,, is something raised to the n'" power, so this is a good candidate for the
n'™ Root Test.

R E _ 1 n+2 \" _ 1; n+2\ _ 13 n _ 1
Observe: lim, ., /|a,| = lim, , { (2n+1) = lim,, 00 (2n+1) = limy oo 5= = 5

Since lim,, ., ¥/|a,| < 1, the series converges. by the n'* Root Test.

Z (22121)71 converges by the n'" Root Test.
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Determine convergence/divergence of the given series. (Justify your answer!)
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The n'" term a,, contains a factorial, so this is a good candidate for the Ratio Test.
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Observe: lim,,_, | =2 = lim,, 0 (("Ln )) = lim,, o m;‘—n = lim,, oo = 0
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Since lim,, o, |“| < 1, the series converges.
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E % converges by the Ratio Test.
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Extra Wow! (10 points)

Determine convergence/divergence of the given series. (Justify your answer!)
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Observe: Our series fits the form: Z ()" — Z 1)"a
n=1 v n=1

an

The terms of the series are alternately positive and negative.

Also: lim,, o a, = lim,,_,o \/Lﬁ =0 (ie.,lim, a, =0)

And:

By the Alternating Series Test, the series converges.

Z "+1 L 7 converges by the Alternating Series Test

n=1




