MTH 1126-Test \#4 - Version 1 - Solutions

Spring 2022

Pat Rossi
Name \qquad

Show CLEARLY how you arrive at your answers.

In Exercises 1-2, Determine convergence/divergence. If the integral converges, find its value.

1. $\int_{6}^{\infty} \frac{1}{(x-2)^{\frac{3}{2}}} d x=$

$$
\begin{aligned}
\int_{6}^{\infty} \frac{1}{(x-2)^{\frac{3}{2}}} d x & =\lim _{b \rightarrow \infty} \int_{6}^{b} \frac{1}{(x-2)^{\frac{3}{2}}} d x=\lim _{b \rightarrow \infty} \int_{6}^{b}(x-2)^{-\frac{3}{2}} d x=\lim _{b \rightarrow \infty}\left[\frac{(x-2)^{-\frac{1}{2}}}{\left(-\frac{1}{2}\right)}\right]_{6}^{b} \\
& =\lim _{b \rightarrow \infty}\left[-2(x-2)^{-\frac{1}{2}}\right]_{6}^{b}=\lim _{b \rightarrow \infty}\left[-\frac{2}{(x-2)^{\frac{1}{2}}}\right]_{6}^{b} \\
& =\lim _{b \rightarrow \infty}\left[-\frac{2}{(b-2)^{\frac{1}{2}}}-\left(-\frac{2}{(6-2)^{\frac{1}{2}}}\right)\right]=\lim _{b \rightarrow \infty}\left[-\frac{2}{(b-2)^{\frac{1}{2}}}+\frac{2}{(6-2)^{\frac{1}{2}}}\right] \\
& =\lim _{b \rightarrow \infty}\left[-\frac{2}{(b-2)^{\frac{1}{2}}}+\frac{2}{2}\right]=[0+1]=1
\end{aligned}
$$

$$
\text { i.e., } \int_{6}^{\infty} \frac{1}{(x-2)^{\frac{3}{2}}} d x=1 \quad \text { (Integral Converges) }
$$

2. $\int_{2}^{6} \frac{1}{(x-2)^{\frac{1}{2}}} d x=$

Because $\frac{1}{(x-2)^{\frac{1}{2}}}$ is discontinuous at $x=2$, this is an improper integral.

$$
\begin{aligned}
\int_{2}^{6} \frac{1}{(x-2)^{\frac{1}{2}}} d x & =\lim _{a \rightarrow 2^{+}} \int_{a}^{6} \frac{1}{(x-2)^{\frac{1}{2}}} d x=\lim _{a \rightarrow 2^{+}} \int_{a}^{6}(x-2)^{-\frac{1}{2}} d x=\lim _{a \rightarrow 2^{+}}\left[\frac{(x-2)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}\right]_{a}^{6} \\
& =\lim _{a \rightarrow 2^{+}}\left[2(x-2)^{\frac{1}{2}}\right]_{a}^{6}=\lim _{a \rightarrow 2^{+}}\left[2(6-2)^{\frac{1}{2}}-2(a-2)^{\frac{1}{2}}\right] \\
& =\left[2(2)-2(0)^{\frac{1}{2}}\right]=4
\end{aligned}
$$

$$
\text { i.e. } \int_{2}^{6} \frac{1}{(x-2)^{\frac{1}{2}}} d x=4 \quad \text { (Integral Converges) }
$$

3. Determine convergence/divergence of the sequence whose $n^{\text {th }}$ term is given by:
$a_{n}=\cos \left(\frac{n \pi}{2}\right)$. (i.e., Determine convergence/divergence of the sequence $\left\{\cos \left(\frac{n \pi}{2}\right)\right\}_{n=1}^{\infty}=$ $\{0,1,0,-1, \ldots\}$.)

Observe: $\lim _{n \rightarrow \infty} \cos \left(\frac{n \pi}{2}\right)$ Does Not Exist.
The logic here is that in order for the sequence to converge to some real number L, the terms of the sequence $\left\{\cos \left(\frac{n \pi}{2}\right)\right\}_{n=1}^{\infty}$ have to get arbitrarily close to L as n gets large. However, consecutive terms of the sequence will always be 1 unit apart, which means that if one term of the sequence is extremely close to L, its successor and predecessor will have to be almost 1 unit away from L.

Therefore, $\lim _{n \rightarrow \infty} \cos \left(\frac{n \pi}{2}\right)$ Does Not Exist, and consequently, the series Diverges.

The Sequence Diverges. $\left(\lim _{n \rightarrow \infty} \cos \left(\frac{n \pi}{2}\right)\right.$ Does Not Exist)
4. Determine convergence/divergence of the given series. (Justify your answer!) If the series converges, determine its sum.
$\sum_{n=1}^{\infty} \frac{1}{n^{2}+5 n+6}=$
If the series converges, determine its sum. In general, there are only two types of convergent series whose sums we can compute: Geometric and "Telescoping Sum."

The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+5 n+6}$ is definitely NOT Geometric.
Maybe it can be written as a "Telescoping Sum."
So let's see if we can express $a_{n}=\frac{1}{n^{2}+5 n+6}$ as the difference of two terms.

$$
\begin{aligned}
& \frac{1}{n^{2}+5 n+6}=\frac{1}{(n+2)(n+3)}=\frac{C_{1}}{n+2}+\frac{C_{2}}{n+3} \\
& \text { i.e., } \frac{1}{(n+2)(n+3)}=\frac{C_{1}}{n+2}+\frac{C_{2}}{n+3} \\
& \Rightarrow \frac{1}{(n+2)(n+3)}(n+2)(n+3)=\frac{C_{1}}{n+2}(n+2)(n+3)+\frac{C_{2}}{n_{3}}(n+2)(n+3) \\
& \Rightarrow 1=C_{1}(n+3)+C_{2}(n+2) \\
& n=-3 \Rightarrow 1=C_{2}(-1) \\
& \quad \Rightarrow C_{2}=-1
\end{aligned}
$$

$$
\begin{gathered}
n=-2 \Rightarrow 1=C_{1}(1) \\
\Rightarrow C_{1}=1
\end{gathered}
$$

Thus, $\frac{1}{n^{2}+5 n+6}=\frac{1}{(n+2)(n+3)}=\frac{1}{n+2}-\frac{1}{n+3}$

$$
\begin{aligned}
& \begin{aligned}
& \Rightarrow \sum_{n=1}^{N} \frac{1}{n^{2}+5 n+6}=\sum_{n=1}^{N}\left(\frac{1}{n+2}-\frac{1}{n+3}\right)=\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\ldots \\
&+\left(\frac{1}{N}-\frac{1}{N+1}\right)+\left(\frac{1}{N+1}-\frac{1}{N+2}\right)+\left(\frac{1}{N+2}-\frac{1}{N+3}\right) \\
&=\sum_{n=1}^{N}\left(\frac{1}{n+2}-\frac{1}{n+3}\right)=\frac{1}{3}-\frac{1}{N+3}
\end{aligned} \\
& \text { i.e., } \sum_{n=1}^{\infty} \frac{1}{n^{2}+5 n+6}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(\frac{1}{n+2}-\frac{1}{n+3}\right)=\lim _{N \rightarrow \infty}\left(\frac{1}{3}-\frac{1}{N+3}\right)=\frac{1}{3} \\
& \text { i.e., } \sum_{n=1}^{\infty} \frac{1}{n^{2}+5 n+6}=\frac{1}{3}
\end{aligned}
$$

In Exercises 5-6, determine convergence/divergence of the given series. (Justify your answers!) If the series converges, determine its sum.
5. $1+\frac{3}{5}+\frac{9}{25}+\frac{27}{125}+\ldots+\left(\frac{3}{5}\right)^{n}+\ldots$

If the series converges, determine its sum. In general, there are only two types of convergent series whose sums we can compute: Geometric and "Telescoping Sum."

Notice that each term after the first term is equal to $\frac{3}{5}$ times its predecessor.
The series is geometric with ratio $r=\frac{3}{5}$
Since $|r|<1$, the series converges to $\frac{1^{\text {st }} \text { term }}{1-r}=\frac{1}{1-\frac{3}{5}}=\frac{1}{\left(\frac{2}{5}\right)}=\frac{5}{2}$

The series converges to $\frac{5}{2}$
6. $\sum_{n=1}^{\infty} \frac{n}{n+5}=$

There are a few different ways that we can do this.
First, note that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+5}=1$
Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series diverges.
i.e., $\sum_{n=1}^{\infty} \frac{n}{n+5}$ diverges by the " $n^{\text {th }}$ term Test."

In Exercises 7-8, determine convergence/divergence of the given series. (Justify your answers!)
7. $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}-1}$

There are a few different ways that we can do this.
We can compare $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}-1}$ to $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}}$, which is a p-series with $p=\frac{1}{2}$.
Hence $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ diverges.
Since $\underbrace{\frac{1}{n^{\frac{1}{2}}}}_{a_{n}}<\underbrace{\frac{1}{n^{\frac{1}{2}}-1}}_{b_{n}}$ and $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ diverges, $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}-1}$ diverges also, by the Direct Com-
parison Test.
Alternatively: Observe that $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(\frac{1}{n^{\frac{1}{2}}}\right)}{\left(\frac{1}{n^{\frac{1}{2}}-1}\right)}\right|=\lim _{n \rightarrow \infty} \frac{n^{\frac{1}{2}}-1}{n^{\frac{1}{2}}}=1$
Since $0<\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|<\infty$, Both series "do the same thing."
Since $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}}$, is a divergent p-series (with $p=\frac{1}{2}$), $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}-1}$ diverges also, by the Limit
Comparison Test.
i.e., $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}-1}$ diverges by Direct Comparison and Limit Comparison with $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{1}{2}}}$
8. $\sum_{n=1}^{\infty} \frac{1}{n+3}$

There are a few ways to do this.
First, we can compare $\sum_{n=1}^{\infty} \frac{1}{n+3}$ with $\sum_{n=1}^{\infty} \frac{1}{n}$, which is the divergent Harmonic Series.
Since $\underbrace{\frac{1}{n+3}}_{a_{n}}<\underbrace{\frac{1}{n}}_{b_{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the Direct Comparison Test doesn't apply.
Applying the Limit Comparison Test, we have: $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(\frac{1}{n+3}\right)}{\left(\frac{1}{n}\right)}\right|=$ $\lim _{n \rightarrow \infty} \frac{n}{n+3}=1$

Since $0<\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|<\infty$, Both series "do the same thing."
Since $\sum_{n=1}^{\infty} \frac{1}{n}$, is the divergent Harmonic Series, $\sum_{n=4}^{\infty} \frac{1}{n+3}$ diverges also, by the Limit
Comparison Test.
Alternatively, $\int_{1}^{\infty} \frac{1}{n+3} d n=\lim _{b \rightarrow \infty} \int_{1}^{b} \underbrace{\frac{1}{n+3}}_{\frac{1}{u}} \underbrace{d n}_{d u}=\lim _{b \rightarrow \infty}[\ln (n+3)]_{1}^{b}$
$\lim _{b \rightarrow \infty}[\ln (b+3)-\ln (1)]=\infty$
$\sum_{n=4}^{\infty} \frac{1}{n+3}$ diverges by the Integral Test

$$
\sum_{n=4}^{\infty} \frac{1}{n+3} \text { diverges by the Integral Test and by Limit Comparison with } \sum_{n=4}^{\infty} \frac{1}{n}
$$

For exercises 9-10, choose one. (You can do the other for extra credit. (10 points))
9. Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty}\left(\frac{n+2}{2 n+1}\right)^{n}$
The $n^{\text {th }} a_{n}$ is something raised to the $n^{\text {th }}$ power, so this is a good candidate for the $n^{\text {th }}$ Root Test.

Observe: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n+2}{2 n+1}\right)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+2}{2 n+1}\right)=\lim _{n \rightarrow \infty} \frac{n}{2 n}=\frac{1}{2}$
Since $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$, the series converges. by the $n^{\text {th }}$ Root Test.

$$
\sum_{n=1}^{\infty}\left(\frac{n+2}{2 n+1}\right)^{n} \text { converges by the } n^{\text {th }} \text { Root Test. }
$$

10. Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$
The $n^{\text {th }}$ term a_{n} contains a factorial, so this is a good candidate for the Ratio Test.
Observe: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{2^{n+1}}{(n+1)}}{\left(\frac{2^{n}}{n!}\right)}\right|=\lim _{n \rightarrow \infty} \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0$
Since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, the series converges.
$\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges by the Ratio Test.

Extra Wow! (10 points)
Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{2}+\ldots$
Observe: Our series fits the form: $\sum_{n=1}^{\infty}(-1)^{n+1} \underbrace{\frac{1}{\sqrt{n}}}_{a_{n}}=\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$
The terms of the series are alternately positive and negative.
Also: $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0 \quad$ (i.e., $\lim _{n \rightarrow \infty} a_{n}=0$)
And: $\underbrace{\frac{1}{\sqrt{n+1}}}_{a_{n+1}} \leq \underbrace{\frac{1}{\sqrt{n}}}_{a_{n}}$
By the Alternating Series Test, the series converges.
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}$ converges by the Alternating Series Test

