MTH 1126-Test \#4 - Version 2 - Solutions
 Spring 2022

Pat Rossi
Name \qquad

Show CLEARLY how you arrive at your answers.

In Exercises 1-2, Determine convergence/divergence. If the integral converges, find its value.

1. $\int_{2}^{\infty} \frac{1}{(x-1)} d x=$

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{(x-1)} d x & =\lim _{b \rightarrow \infty} \int_{2}^{b} \underbrace{\frac{1}{(x-1)}}_{\frac{1}{u}} \underbrace{d x}_{d u}=\lim _{b \rightarrow \infty}[\ln (x-1)]_{2}^{b} \\
& =\lim _{b \rightarrow \infty}[\ln (b)-\ln (2-1)]=\lim _{b \rightarrow \infty}[\ln (b)-0]=\infty
\end{aligned}
$$

$$
\text { i.e., } \int_{2}^{\infty} \frac{1}{(x-1)} d x=\infty \quad \text { (Integral Diverges) }
$$

2. $\int_{0}^{3} \frac{1}{\sqrt{3-x}} d x=$

Because $\frac{1}{\sqrt{3-x}}$ is discontinuous at $x=3$, this is an improper integral.

$$
\begin{aligned}
\int_{0}^{3} \frac{1}{\sqrt{3-x}} d x & =\lim _{b \rightarrow 3^{-}} \int_{0}^{b} \frac{1}{(3-x)^{\frac{1}{2}}} d x=\lim _{b \rightarrow 3^{-}} \int_{0}^{b} \underbrace{(3-x)^{-\frac{1}{2}}}_{u^{-\frac{1}{2}}} \underbrace{d x}_{-d u} d x=\lim _{b \rightarrow 3^{-}}\left[-\frac{(3-x)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}\right]_{0}^{b} \\
& =\lim _{b \rightarrow 3^{-}}\left[-2(3-x)^{\frac{1}{2}}\right]_{0}^{b}=\lim _{b \rightarrow 3^{-}}\left[-2(3-b)^{\frac{1}{2}}-\left(-2(3-0)^{\frac{1}{2}}\right)\right] \\
& =\lim _{b \rightarrow 3^{-}}\left[-2(3-b)^{\frac{1}{2}}+2(3-0)^{\frac{1}{2}}\right]=\left[2(0)^{\frac{1}{2}}+2(3)^{\frac{1}{2}}\right]=2 \sqrt{3}
\end{aligned}
$$

i.e. $\int_{0}^{3} \frac{1}{\sqrt{3-x}} d x=2 \sqrt{3} \quad$ (Integral Converges)
3. Determine convergence/divergence of the sequence whose $n^{\text {th }}$ term is given by:
$a_{n}=\frac{1+(-1)^{n}}{n}$. (i.e., Determine convergence/divergence of the sequence $\left\{\frac{1+(-1)^{n}}{n}\right\}_{n=1}^{\infty}=$ $\left.\left\{0,1,0, \frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4}, \ldots\right\}.\right)$

Observe: When n is odd, $a_{n}=\frac{1+(-1)^{n}}{n}=a_{n}=\frac{1+(-1)}{n}=0$
So when n is odd, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} 0=0$
When n is even, $a_{n}=\frac{1+(-1)^{n}}{n}=\frac{1+1}{n}=\frac{2}{n}$
So when n is even, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2}{n}=0$
Thus, $\lim _{n \rightarrow \infty} a_{n}=0$
$\lim _{n \rightarrow \infty} \frac{1+(-1)^{n}}{n}=0$ (i.e., The sequence Converges to 0 .)
4. Determine convergence/divergence of the given series. (Justify your answer!) If the series converges, determine its sum.
$\sum_{n=1}^{\infty} \frac{1}{n^{2}+3 n+2}=$
If the series converges, determine its sum. In general, there are only two types of convergent series whose sums we can compute: Geometric and "Telescoping Sum."

The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+5 n+6}$ is definitely NOT Geometric.
Maybe it can be written as a "Telescoping Sum."
So let's see if we can express $a_{n}=\frac{1}{n^{2}+3 n+2}$ as the difference of two terms.

$$
\begin{aligned}
& \frac{1}{n^{2}+3 n+2}=\frac{1}{(n+1)(n+2)}=\frac{C_{1}}{n+1}+\frac{C_{2}}{(n+2)} \\
& \text { i.e., } \frac{1}{(n+1)(n+2)}=\frac{C_{1}}{n+1}+\frac{C_{2}}{n+2} \\
& \Rightarrow \frac{1}{(n+1)(n+2)}(n+1)(n+2)=\frac{C_{1}}{n+1}(n+1)(n+2)+\frac{C_{2}}{n+2}(n+1)(n+2) \\
& \Rightarrow 1=C_{1}(n+2)+C_{2}(n+1) \\
& n=-2 \Rightarrow 1=C_{2}(-1) \\
& \quad \Rightarrow C_{2}=-1 \\
& n=-1 \Rightarrow 1=C_{1}(1)
\end{aligned}
$$

$$
\Rightarrow C_{1}=1
$$

Thus, $\frac{1}{n^{2}+3 n+2}=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$

$$
\begin{aligned}
& \begin{aligned}
& \Rightarrow \sum_{n=1}^{N} \frac{1}{n^{2}+3 n+2}=\sum_{n=1}^{N}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\ldots \\
&+\left(\frac{1}{N-1}-\frac{1}{N}\right)+\left(\frac{1}{N}-\frac{1}{N+1}\right)+\left(\frac{1}{N+1}-\frac{1}{N+2}\right) \\
&=\sum_{n=1}^{N}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)=\frac{1}{2}-\frac{1}{N+2}
\end{aligned} \\
& \text { i.e., } \sum_{n=1}^{\infty} \frac{1}{n^{2}+3 n+2}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)=\lim _{N \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{N+2}\right)=\frac{1}{2} \\
& \text { i.e., } \sum_{n=1}^{\infty} \frac{1}{n^{2}+3 n+2}=\frac{1}{2}
\end{aligned}
$$

In Exercises 5-6, determine convergence/divergence of the given series. (Justify your answers!) If the series converges, determine its sum.

5. $1+\frac{2}{5}+\frac{4}{25}+\frac{8}{125}+\frac{16}{625}+\ldots$

If the series converges, determine its sum. In general, there are only two types of convergent series whose sums we can compute: Geometric and "Telescoping Sum."

Notice that each term after the first term is equal to $\frac{2}{5}$ times its predecessor.
The series is geometric with ratio $r=\frac{2}{5}$
Since $|r|<1$, the series converges to $\frac{1^{\text {st }} \text { term }}{1-r}=\frac{1}{1-\frac{2}{5}}=\frac{1}{\left(\frac{3}{5}\right)}=\frac{5}{3}$

The series converges to $\frac{5}{3}$
6. $\sum_{n=1}^{\infty} \frac{n^{2}+2 n}{n^{2}+4 n+3}=$

First, note that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n}{n^{2}+4 n+3}=\lim _{n \rightarrow \infty} \frac{2 n+2}{2 n+4}=\lim _{n \rightarrow \infty} \frac{2}{2}=1$
Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series diverges.
i.e., $\sum_{n=1}^{\infty} \frac{n}{n+5}$ diverges by the " $n^{\text {th }}$ term Test."

In Exercises 7-8, determine convergence/divergence of the given series. (Justify your answers!)
7. $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{3}{2}}-1}$

We can compare $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{3}{2}}-1}$ to $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{3}{2}}}$, which is a p-series with $p=\frac{3}{2}$.
Hence $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges.
Since $\underbrace{\frac{1}{n^{\frac{3}{2}}}}_{a_{n}}<\underbrace{\frac{1}{n^{\frac{3}{2}}-1}}_{b_{n}}$ and $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges, we can conclude nothing about $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{3}{2}}-1}$.
The Direct Comparison Test is inconclusive.
However: Observe that $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(\frac{1}{n^{\frac{3}{2}}}\right)}{\left(\frac{1}{n^{\frac{3}{2}}-1}\right)}\right|=\lim _{n \rightarrow \infty} \frac{n^{\frac{3}{2}}-1}{n^{\frac{3}{2}}}=1$
Since $0<\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|<\infty$, Both series "do the same thing."
Since $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{3}{2}}}$, is a convergent p-series (with $p=\frac{3}{2}$), $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{3}{2}}-1}$ converges also, by the Limit

Comparison Test.
i.e., $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{3}{2}}-1}$ converges by Limit Comparison with $\sum_{n=4}^{\infty} \frac{1}{n^{\frac{3}{2}}}$
8. $\sum_{n=1}^{\infty} \frac{1}{n+3}$

There are a few ways to do this.
First, we can compare $\sum_{n=1}^{\infty} \frac{1}{n+3}$ with $\sum_{n=1}^{\infty} \frac{1}{n}$, which is the divergent Harmonic Series.
Since $\underbrace{\frac{1}{n+3}}_{a_{n}}<\underbrace{\frac{1}{n}}_{b_{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the Direct Comparison Test doesn't apply.
Applying the Limit Comparison Test, we have: $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(\frac{1}{n+3}\right)}{\left(\frac{1}{n}\right)}\right|=$ $\lim _{n \rightarrow \infty} \frac{n}{n+3}=1$

Since $0<\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|<\infty$, Both series "do the same thing."
Since $\sum_{n=1}^{\infty} \frac{1}{n}$, is the divergent Harmonic Series, $\sum_{n=4}^{\infty} \frac{1}{n+3}$ diverges also, by the Limit
Comparison Test.
Alternatively, $\int_{1}^{\infty} \frac{1}{n+3} d n=\lim _{b \rightarrow \infty} \int_{1}^{b} \underbrace{\frac{1}{n+3}}_{\frac{1}{u}} \underbrace{d n}_{d u}=\lim _{b \rightarrow \infty}[\ln (n+3)]_{1}^{b}$
$\lim _{b \rightarrow \infty}[\ln (b+3)-\ln (1)]=\infty$
$\sum_{n=4}^{\infty} \frac{1}{n+3}$ diverges by the Integral Test

$$
\sum_{n=4}^{\infty} \frac{1}{n+3} \text { diverges by the Integral Test and by Limit Comparison with } \sum_{n=4}^{\infty} \frac{1}{n}
$$

For exercises 9-10, choose one. (You can do the other for extra credit. (10 points))
9. Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty}\left(\frac{n+1}{3 n+2}\right)^{n}$
The $n^{\text {th }}$ term, a_{n} is something raised to the $n^{\text {th }}$ power, so this series is a good candidate for the $n^{\text {th }}$ Root Test.

Observe: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n+1}{3 n+2}\right)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{3 n+2}\right)=\lim _{n \rightarrow \infty} \frac{1}{3}=\frac{1}{3}$
Since $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$, the series converges. by the $n^{\text {th }}$ Root Test.
$\sum_{n=1}^{\infty}\left(\frac{n+1}{3 n+2}\right)^{n}$ converges by the $n^{\text {th }}$ Root Test.
10. Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
The $n^{\text {th }}$ term a_{n} contains a factorial, so this is a good candidate for the Ratio Test.
Observe: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{3^{n+1}}{(n+1)}}{\left(\frac{3^{n}}{n!}\right)}\right|=\lim _{n \rightarrow \infty} \frac{3^{n+1}}{(n+1)!} \frac{n!}{3^{n}}=\lim _{n \rightarrow \infty} \frac{3}{n+1}=0$
Since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, the series converges.
$\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$ converges by the Ratio Test.

Extra Wow! (10 points)
Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{2}+\ldots$
Observe: Our series fits the form: $\sum_{n=1}^{\infty}(-1)^{n+1} \underbrace{\frac{1}{\sqrt{n}}}_{a_{n}}=\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$
The terms of the series are alternately positive and negative.
Also: $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0 \quad$ (i.e., $\lim _{n \rightarrow \infty} a_{n}=0$)
And: $\underbrace{\frac{1}{\sqrt{n+1}}}_{a_{n+1}} \leq \underbrace{\frac{1}{\sqrt{n}}}_{a_{n}}$
By the Alternating Series Test, the series converges.
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}$ converges by the Alternating Series Test

