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Pat Rossi Name

Show CLEARLY how you arrive at your answers.

In Exercises 1-2, Determine convergence/divergence. If the integral converges, find its value.
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Because \/3177 is discontinuous at x = 3, this is an improper integral.
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ie. f03 ﬁdz = 2y/3 (Integral Converges)




3. Determine convergence/divergence of the sequence whose n'® term is given by:

n n ) 00
ay = % (i.e., Determine convergence/divergence of the sequence {#}

{0,1,0,1,0,4,0,1,...} )
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Observe: When n is odd, a,, = 1+(;1)n =a, = 1+§:1) =0

So when n is odd, lim,,_,s @, = lim,_,5c 0 =0
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When n is even, a, = ) ) = 1L —
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So when n is even, lim,, . a,, = lim,,_, % =0

Thus, lim,, ., a, =0

lim,, s w =0 (i.e., The sequence Converges to 0.)

4. Determine convergence/divergence of the given series. (Justify your answer!) If the
series converges, determine its sum.
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If the series converges, determine its sum. In general, there are only two types
of convergent series whose sums we can compute: Geometric and “Telescoping Sum.”

The series Z ——+— is definitely NOT Geometric.
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Maybe it can be written as a “Telescoping Sum.”

So let’s see if we can express a,, = as the difference of two terms.
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In Exercises 5-6, determine convergence/divergence of the given series. (Justify your an-
swers!) If the series converges, determine its sum.

2 4 8 16
5. 1+5+%+m+@+

If the series converges, determine its sum. In general, there are only two types
of convergent series whose sums we can compute: Geometric and “Telescoping Sum.”

Notice that each term after the first term is equal to % times its predecessor.

The series is geometric with ratio r = 2
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Since |r| < 1, the series converges to 11 = 1
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The series converges to g




6. ZOO n242n

n=1 n24+4n+3 =
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n2+4n+3

2n+2
2n+4

First, note that lim,,_,, a,, = lim,,_, = lim,, o = lim,, % =1

Since lim,, ., a, # 0, the series diverges.
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ie., Z —5 diverges by the “npt term Test.”
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In Exercises 7-8, determine convergence/divergence of the given series. (Justify your an-

swers!)
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However: Observe that lim,,_, . “;—Z‘ = lim,,_, <

< 00, Both series “do the same thing.”
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There are a few ways to do this.
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First, we can compare g n+r3 with g %, which is the divergent Harmonic Series.
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Applying the Limit Comparison Test, we have: lim, . = lim,
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< 00, Both series “do the same thing.”
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Since Z %, is the divergent Harmonic Series, Z n+r3 diverges also, by the Limit
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Z n+r3 diverges by the Integral Test
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For exercises 9-10, choose one. (You can do the other for extra credit. (10
points))

9.

10.

Determine convergence/divergence of the given series. (Justify your answer!)
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The n'" term, a, is something raised to the n'"® power, so this series is a good
candidate for the n'" Root Test.

R E _ 1 n+1\" _ 1; n+l\ _1; 1 _ 1
Observe: lim, o0 {/]a,| = limy, o0 { (3n+2> = limy, o (3n+2) = limy, 0o 3 = 3

Since lim,, ., ¥/|a,| < 1, the series converges. by the n'* Root Test.

Z (32112)71 converges by the n'® Root Test.
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Determine convergence/divergence of the given series. (Justify your answer!)
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The n'" term a,, contains a factorial, so this is a good candidate for the Ratio Test.
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Since lim,, ., |—*&

Z ?:L—T converges by the Ratio Test.
n=1




Extra Wow! (10 points)

Determine convergence/divergence of the given series. (Justify your answer!)

nt+l 1 1 1 1
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Observe: Our series fits the form: Z ()" — Z 1)"a
n=1 \/ =t

an

The terms of the series are alternately positive and negative.

Also: lim,, o a, = lim,,_,o \/Lﬁ =0 (ie.,lim, a, =0)

And:

By the Alternating Series Test, the series converges.

Z "+1 L 7 converges by the Alternating Series Test

n=1




