MTH 4422 Midterm Study Guide

Spring 2023
Pat Rossi
Name \qquad

Instructions. Answer the following questions thoroughly.

1. Explain the idea behind Newton's Method for solving the equation $f(x)=0$, using the Taylor's Series approach.
2. Explain the idea behind Newton's Method for solving the equation $f(x)=0$, using the Geometric approach.
3. Explain how and why the Bisection Algorithm (for solving $f(x)=0$) works.
4. Explain how and why the Fixed Point Algorithm (for solving $f(p)=p$) works.
5. Explain how LaGrange Polynomials are constructed to approximate the function whose data points include $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$, and explain why this works.
6. Describe the Trapezoidal Method for integration, and explain why it works.
7. Describe Simpson's Method for approximating $\int_{a}^{b} f(x) d x$, and explain why it works.
8. Given the data points $(-1,-2),(1,2),(2,7)$, compute the LaGrange Polynomial that agrees with the data points.
We have 3 data points, so we should have a polynomial of degree 2 .
9. Given the data points $(-2,-46),(-1,-14),(0,-4),(1,2),(2,22)$ compute the LaGrange Polynomial that agrees with the data points.
10. With reference to the preceding exercise, we had 5 data points and yet the LaGrange Polynomial was only of degree 3. (We would expect that the LaGrange Polynomial that fits all five data points would have degree 4.) How can we explain this?
