# MTH 4441 Test \#1 - Solutions 

Fall 2023
Pat Rossi
Name $\qquad$

## 1. Define: Group

A nonempty set $G$ together with a binary operation $*$ on $G$ form a group, denoted $(G, *)$, exactly when the following four "group axioms" hold:

- $G$ is "closed under * ."
-     * is associative
- $\exists e \in G$ such that $e * x=x=x * e, \forall x \in G$

We call $e$ the identity element

- $\forall x \in G, \exists y \in G$ such that $x * y=e$ and $y * x=e$

We call $y$ the inverse of $x$

## 2. Define: Binary operation

Given a non-empty set $S$, a binary operation $*$ on the set $S$ is a rule that assigns an element $x_{3}$ to each ordered pair $\left(x_{1}, x_{2}\right)$ of elements in $S$.The assignment is made in this manner:

$$
x_{1} * x_{2}=x_{3}
$$

3. Define: Integers $a$ and $b$ congruent modulo $n$.

Let $n \geq 2$ be a natural number. Then integers $a$ and $b$ are congruent modulo $n$, denoted $a \equiv b(\bmod n)$, exactly when $a-b=k n$, for some integer $k$. (i.e., $a \equiv b(\bmod n)$ exactly when $a-b$ is a multiple of $n$.) Otherwise, $a$ and $b$ are incongruent modulo $n$, denoted $a \neq b(\bmod n)$.
4. Give an alternate characterization of congruence modulo $n$.

Let $n \geq 2$ be a natural number. Then integers $a$ and $b$ are congruent modulo $n$, denoted $a \equiv b(\bmod n)$, exactly when $a$ and $b$ have the same "proper remainder" (i.e., $r \in\{0,1,2, \ldots, n-1\}$ ) when divided by $n$. Otherwise, $a$ and $b$ are incongruent modulo $n$, denoted $a \equiv b(\bmod n)$.
5. Define: $\left(\mathbb{Z}_{n}, \oplus\right)$ (the additive group of integers modulo $n$ )

Let $n \geq 2$ and let $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$. The additive group of integers modulo $n$, is the group $\left(\mathbb{Z}_{n}, \oplus\right)$ in which $\oplus$ is addition modulo $n$.

## 6. Define: $\left(U_{n}, \odot\right)$ (the multiplicative group of integers modulo $n$ )

Let $n$ be a prime natural number and let $U_{n}=\{1,2, \ldots, n-1\}$. The multiplicative group of integers modulo $n$ is the group $\left(U_{n}, \odot\right)$ in which $\odot$ is multiplication modulo $n$.
7. Prove: If $(G, *)$ is a group, and $a, b$ are any elements of $G$, then $(a * b)^{-1}=b^{-1} * a^{-1}$ pf/ Observe that:
$(a * b) *\left(b^{-1} * a^{-1}\right)=a *\left(b *\left(b^{-1} * a^{-1}\right)\right)=a *\left(\left(b * b^{-1}\right) * a^{-1}\right)=a *\left(e * a^{-1}\right)=$ $a * a^{-1}=e$
i.e., $(a * b) *\left(b^{-1} * a^{-1}\right)=e$,

Hence, $\left(b^{-1} * a^{-1}\right)=(a * b)^{-1}$
8. Define: The order of an element $x$ of a group $(G, *)$ (In your definition, specify either additive or multiplicative notation.)

Given a group $(G, *)$, and an element $x \in G$, the order of the element $x$, denoted $o(x)$, is the least $n \in \mathbb{N}$ such that $n x=0$. (Additive notation) If no such $n$ exists, then $o(x)=\infty$.

Given a group $(G, *)$, and an element $x \in G$, the order of the element $x$, denoted $o(x)$, is the least $n \in \mathbb{N}$ such that $x^{n}=1$. (Multiplicative notation) If no such $n$ exists, then $o(x)=\infty$.
9. Prove: The inverse of an element $x$ in a group $(G, *)$ is unique.

Remark: We will show that an element $x$ has a unique inverse by assuming that $x$ has (at least) two inverses elements in the group and showing that they must be one, and the same element.
pf/ Suppose that $x$ has (at least) two inverses, $y$ and $z$ in $G$.
Then $x y=e$ and $y x=e$ (because $y$ is an inverse of x )
Also: $x z=e$ and $z x=e$ (because $z$ is an inverse of x )
Observe: $y=y e=y(x z)=(y x) z=e z=z$
i.e., $y=z$
10. Construct the group table for $\left(U_{7}, \odot\right)$

In $\left(U_{7}, \odot\right)$, the operation $\odot$ is multiplication modulo 7

| $\odot$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 6 | 5 | 4 | 3 | 2 | 1 |

11. In the previous exercise, determine the order of the element 3

With multiplicative notation, the order of an element $g \in G$ is the least natural number $n$ such that $g^{n}=e$ (the identity).

In the context of the group $\left(U_{7}, \odot\right)$, the order of an element $g \in U_{7}$ is the least natural number $n$ such that $g^{n}=1$ (the identity).

## Observe:

$$
\begin{aligned}
& 3^{1}=3 \quad \text { i.e., } 3^{1}=3 \\
& 3^{2}=9 \equiv 2(\bmod 7) \quad \text { i.e., } 3^{2}=2 \\
& 3^{3}=3 \cdot 3^{2} \equiv 3 \cdot 2(\bmod 7) \equiv 6(\bmod 7) \quad \text { i.e., } 3^{3}=6 \\
& 3^{4}=3 \cdot 3^{3} \equiv 3 \cdot 6(\bmod 7) \equiv 4(\bmod 7) \quad \text { i.e., } 3^{4}=4 \\
& 3^{5}=3 \cdot 3^{4} \equiv 3 \cdot 4(\bmod 7) \equiv 12(\bmod 7) \equiv 5(\bmod 7) \quad \text { i.e., } 3^{5}=5 \\
& 3^{6}=3 \cdot 3^{5} \equiv 3 \cdot 5(\bmod 7) \equiv 15(\bmod 7) \equiv 1(\bmod 7) \quad \text { i.e., } 3^{6}=1
\end{aligned}
$$

The least natural number $n$ such that $3^{n}=1$ is 6 .

Thus, $o(3)=6$
12. Construct the group table for $\left(\mathbb{Z}_{5}, \oplus\right)$

In $\left(\mathbb{Z}_{5}, \oplus\right)$, the operation $\oplus$ is addition modulo 5
$\mathbb{Z}_{5}=\{0,1,2,3,4\}$

| $\oplus$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 4 | 0 |
| 2 | 2 | 3 | 4 | 0 | 1 |
| 3 | 3 | 4 | 0 | 1 | 2 |
| 4 | 4 | 0 | 1 | 2 | 3 |

13. In the previous exercise, determine the order of the element 4

The operator in the group is additive.
Therefore, $o(4)$ is the least natural number $n$ such that $n 4 \equiv 0(\bmod ) 5$
(i.e., the least natural number $n$ such that $n 4$ is congruent to the identity)
$1 \cdot 4=4 \equiv 4(\bmod ) 5$
$2 \cdot 4=8 \equiv 3(\bmod ) 5$
$3 \cdot 4=12 \equiv 2(\bmod ) 5$
$4 \cdot 4=16 \equiv 1(\bmod ) 5$
$5 \cdot 4=20 \equiv 0(\bmod ) 5$
$o(4)=5$
14. Define what it means for a binary operation $*$ to be associative.

A binary operation $*$ on a set $S$ is said to be associative exactly when $x_{1} *\left(x_{2} * x_{3}\right)=$ $\left(x_{1} * x_{2}\right) * x_{3}, \forall x_{1}, x_{2}, x_{3} \in S$
15. Determine whether the operation $*$, given by $a * b=a b+b a$ is an associative binary operation on the set $\mathbb{R}$.

## Observe:

$$
\begin{aligned}
(a * b) * c & =(a * b) c+c(a * b)=(a b+b a) c+c(a b+b a) \\
& =\underbrace{a b c+b a c+c a b+c b a=a b c+a b c+a b c+a b c}_{\text {Because Multiplication of Real Numbers is commutative }}=4 a b c
\end{aligned}
$$

## Also:

$$
\begin{aligned}
a *(b * c)= & a(b * c)+(b * c) a=a(b c+c b)+(b c+c b) a \\
& =\underbrace{a b c+a c b+b c a+c b a=a b c+a b c+a b c+a b c}_{\text {Because Multiplication of Real Numbers is commutative }}=4 a b c
\end{aligned}
$$

$(a * b) * c=4 a b c=a *(b * c)$
i.e., $(a * b) * c=a *(b * c)$.

Hence, $*$ is associative on $\mathbb{R}$.
16. Fill out the group table below:

| $*$ | $e$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| $e$ |  |  |  |  |
| $a$ |  |  |  |  |
| $b$ |  |  |  |  |
| $c$ |  |  |  |  |

There are a number of possibilities. Here are a few:

| * | $e$ | $a$ | $b$ | c | * | $e$ | $a$ | $b$ | $c$ | * | $e$ | $a$ | $b$ | c | * | $e$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $b$ | $c$ | $e$ | $e$ | $a$ | $b$ | $c$ | $e$ | $e$ | $a$ | $b$ | $c$ | $e$ | $e$ | $a$ | $b$ | c |
| $a$ | $a$ | $b$ | $c$ | $e$ | $a$ | $a$ | $c$ | $e$ | $b$ | $a$ | $a$ | $e$ | $c$ | $b$ | $a$ | $a$ | $b$ | c | $e$ |
| $b$ | $b$ | $c$ | $e$ | $a$ | $b$ | $b$ | $e$ | $c$ | $a$ | $b$ | $b$ | $c$ | $a$ | $e$ | $b$ | $b$ | $c$ | $e$ | $a$ |
| c | c | $e$ | $a$ | $b$ | $c$ | c | $b$ | $a$ | $e$ | $c$ | $c$ | $b$ | $e$ | $a$ | $c$ | $c$ | $e$ | a | $b$ |
| * | $e$ | $a$ | $b$ | c |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $e$ | $e$ | $a$ | $b$ | c |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $a$ | $a$ | $e$ | $c$ | $b$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $b$ | $b$ | $c$ | $e$ | $a$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $c$ | $c$ | $b$ | $a$ | $e$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

