MTH 4441 Test #1 - Solutions

 $\mathrm{Fall}\ 2023$

Pat Rossi

Name $_$

1. Define: Group

A nonempty set G together with a binary operation * on G form a **group**, denoted (G, *), exactly when the following four "group axioms" hold:

- G is "closed under * ."
- * is associative
- $\exists e \in G$ such that e * x = x = x * e, $\forall x \in G$

We call e the **identity element**

∀x ∈ G, ∃ y ∈ G such that x * y = e and y * x = e
We call y the inverse of x

2. Define: Binary operation

Given a non-empty set S, a **binary operation** * on the set S is a rule that assigns an element x_3 to each ordered pair (x_1, x_2) of elements in S. The assignment is made in this manner:

 $x_1 * x_2 = x_3$

3. Define: Integers a and b congruent modulo n.

Let $n \ge 2$ be a natural number. Then integers a and b are **congruent modulo** n, denoted $a \equiv b \pmod{n}$, exactly when a-b = kn, for some integer k. (i.e., $a \equiv b \pmod{n}$) exactly when a - b is a multiple of n.) Otherwise, a and b are **incongruent modulo** n, denoted $a \equiv b \pmod{n}$.

4. Give an alternate characterization of **congruence modulo** n.

Let $n \ge 2$ be a natural number. Then integers a and b are **congruent modulo** n, denoted $a \equiv b \pmod{n}$, exactly when a and b have the same "proper remainder" (i.e., $r \in \{0, 1, 2, \ldots, n-1\}$) when divided by n. Otherwise, a and b are **incongruent modulo** n, denoted $a \not\equiv b \pmod{n}$.

5. Define: (\mathbb{Z}_n, \oplus) (the additive group of integers modulo n)

Let $n \ge 2$ and let $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. The additive group of integers modulo n, is the group (\mathbb{Z}_n, \oplus) in which \oplus is addition modulo n.

6. Define: (U_n, \odot) (the multiplicative group of integers modulo n)

Let *n* be a prime natural number and let $U_n = \{1, 2, ..., n-1\}$. The **multiplicative** group of integers modulo *n* is the group (U_n, \odot) in which \odot is multiplication modulo *n*.

7. **Prove:** If (G, *) is a group, and a, b are any elements of G, then $(a * b)^{-1} = b^{-1} * a^{-1}$

pf/ Observe that:

 $\begin{array}{ll} (a*b)*(b^{-1}*a^{-1}) \ = \ a*(b*(b^{-1}*a^{-1})) \ = \ a*((b*b^{-1})*a^{-1}) \ = \ a*(e*a^{-1}) \ = \ a*a^{-1} = e \end{array}$

i.e., $(a * b) * (b^{-1} * a^{-1}) = e$,

Hence, $(b^{-1} * a^{-1}) = (a * b)^{-1}$

8. Define: The order of an element x of a group (G, *) (In your definition, specify either additive or multiplicative notation.)

Given a group (G, *), and an element $x \in G$, the **order** of the element x, denoted o(x), is the least $n \in \mathbb{N}$ such that nx = 0. (Additive notation) If no such n exists, then $o(x) = \infty$.

Given a group (G, *), and an element $x \in G$, the **order** of the element x, denoted o(x), is the least $n \in \mathbb{N}$ such that $x^n = 1$. (Multiplicative notation) If no such n exists, then $o(x) = \infty$.

9. **Prove:** The inverse of an element x in a group (G, *) is unique.

Remark: We will show that an element x has a unique inverse by assuming that x has (at least) two inverses elements in the group and showing that they must be one, and the same element.

pf/ Suppose that x has (at least) two inverses, y and z in G.

Then xy = e and yx = e (because y is an inverse of x)

Also: xz = e and zx = e (because z is an inverse of x)

Observe: y = ye = y(xz) = (yx)z = ez = z

i.e., $y = z \blacksquare$

10. Construct the group table for (U_7, \odot)

In (U_7, \odot) , the operation \odot is multiplication modulo 7

\odot	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

11. In the previous exercise, determine the order of the element 3

With **multiplicative** notation, the order of an element $g \in G$ is the least natural number n such that $g^n = e$ (the identity).

In the context of the group (U_7, \odot) , the order of an element $g \in U_7$ is the least natural number n such that $g^n = 1$ (the identity).

Observe:

 $\begin{array}{ll} 3^{1} \equiv 3 & \text{i.e., } 3^{1} \equiv 3 \\ 3^{2} \equiv 9 \equiv 2 \ (\bmod 7) & \text{i.e., } 3^{2} \equiv 2 \\ 3^{3} \equiv 3 \cdot 3^{2} \equiv 3 \cdot 2 \ (\bmod 7) \equiv 6 \ (\mod 7) & \text{i.e., } 3^{3} \equiv 6 \\ 3^{4} \equiv 3 \cdot 3^{3} \equiv 3 \cdot 6 \ (\mod 7) \equiv 4 \ (\mod 7) & \text{i.e., } 3^{4} \equiv 4 \\ 3^{5} \equiv 3 \cdot 3^{4} \equiv 3 \cdot 4 \ (\mod 7) \equiv 12 \ (\mod 7) \equiv 5 \ (\mod 7) & \text{i.e., } 3^{5} \equiv 5 \\ 3^{6} \equiv 3 \cdot 3^{5} \equiv 3 \cdot 5 \ (\mod 7) \equiv 15 \ (\mod 7) \equiv 1 \ (\mod 7) & \text{i.e., } 3^{6} = 1 \\ \text{The least natural number } n \ \text{such that } 3^{n} = 1 \ \text{is } 6. \end{array}$

Thus, o(3) = 6

12. Construct the group table for (\mathbb{Z}_5, \oplus)

In (\mathbb{Z}_5, \oplus) , the operation \oplus is addition modulo 5

 $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$

\oplus	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

13. In the previous exercise, determine the order of the element 4

The operator in the group is additive.

Therefore, o(4) is the least natural number n such that $n4 \equiv 0 \pmod{5}$

(i.e., the least natural number n such that n4 is congruent to the identity)

 $1 \cdot 4 = 4 \equiv 4 \pmod{5}$ $2 \cdot 4 = 8 \equiv 3 \pmod{5}$ $3 \cdot 4 = 12 \equiv 2 \pmod{5}$ $4 \cdot 4 = 16 \equiv 1 \pmod{5}$ $5 \cdot 4 = 20 \equiv 0 \pmod{5}$ $\boxed{o(4) = 5}$

14. Define what it means for a binary operation * to be associative.

A binary operation * on a set S is said to be **associative** exactly when $x_1 * (x_2 * x_3) = (x_1 * x_2) * x_3, \forall x_1, x_2, x_3 \in S$

15. Determine whether the operation *, given by a * b = ab + ba is an associative binary operation on the set \mathbb{R} .

Observe:

$$(a * b) * c = (a * b) c + c (a * b) = (ab + ba) c + c (ab + ba)$$
$$= \underbrace{abc + bac + cab + cba}_{\text{Because Multiplication of Real Numbers is commutative}} = 4abc$$

Also:

$$a * (b * c) = a (b * c) + (b * c) a = a (bc + cb) + (bc + cb) a$$
$$= \underbrace{abc + acb + bca + cba}_{\text{Because Multiplication of Real Numbers is commutative}} = 4abc$$

$$(a * b) * c = 4abc = a * (b * c)$$

i.e., (a * b) * c = a * (b * c).

Hence, * is associative on \mathbb{R} .

16. Fill out the group table below:

*	e	a	b	c
e				
a				
b				
c				

There are a number of possibilities. Here are a few:

*	e	a	b	c	*	e	a	b	c	*	e	a	b	c	*	e	a	b	c
e	e	a	b	c	e	e	a	b	c	e	e	a	b	c	e	e	a	b	c
a	a	b	c	e	a	a	c	e	b	a	a	e	c	b	a	a	b	c	e
b	b	c	e	a	b	b	e	c	a	b	b	c	a	e	b	b	c	e	a
c	c	e	a	b	c	c	b	a	e	С	c	b	e	a	С	c	e	a	b

*	e	a	b	c
e	e	a	b	c
a	a	e	С	b
b	b	С	e	a
c	c	b	a	e