MTH 4441 Exercises To study for Test \#1

Fall 2023
Pat Rossi
Name \qquad

1. In each case below, determine whether $*$ is a closed binary operation on the given set. If it $I S$ a closed binary operation, then determine whether it is commutative and/or associative.
(a) $(\mathbb{Z}, *)$ where $a * b=a+b^{2}$
(b) $(\mathbb{Z}, *)$ where $a * b=a^{2} b^{3}$
(c) $(\mathbb{R}, *)$ where $a * b=\frac{a}{a^{2}+b^{2}}$
(d) $(\mathbb{Z}, *)$ where $a * b=\frac{a^{2}+2 a b+b^{2}}{a+b}$
(e) $(\mathbb{Z}, *)$ where $a * b=a+b-a b$
(f) $(\mathbb{R}, *)$ where $a * b=b$
(g) $(\{-4,-2,1,2,3\}, *)$ where $a * b=|b|$
(h) $(\{1,2,3,6,18\}, *)$ where $a * b=a b$
(i) $\left(\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}, *\right)$ where $*$ is matrix addition
2. Let $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$, and let $\left(\mathbb{Z}_{6}, \oplus\right)$ be a group, where \oplus is addition modulo 6 . Construct the group table.
3. In the group $\left(\mathbb{Z}_{6}, \oplus\right)$, what is the order of the element 2 ? What is the order of the element 3 ?
(i.e., $o(2)=$? $\quad o(3)=$?)
4. Construct the group table for $\left(\mathbb{Z}_{7}, \oplus\right)$.
5. Let $U_{5}=\{1,2,3,4\}$, and let $\left(U_{5}, \odot\right)$ be a group, where \odot is multiplication modulo 5 . Construct the group table.
6. Construct the group table for $\left(U_{3}, \odot\right)$.
7. Construct the group table for $\left(U_{7}, \odot\right)$.
8. Construct the group table for $\left(U_{6}, \odot\right)$.
(a) $\left(U_{6}, \odot\right)$ is NOT a group. Give at least two reasons why it is not a group
9. Construct the group table for $\left(U_{4}, \odot\right)$.
(a) $\left(U_{4}, \odot\right)$ is NOT a group. Give at least two reasons why it is not a group
10. Determine whether the table below defines a group for $G=\{a, b, c\}$. (State why or why not.)

$*$	a	b	c
a	a	b	c
b	b	a	c
c	c	b	a

11. Determine whether the table below defines a group for $G=\{a, b, c\}$. (State why or why not.)

$*$	a	b	c
a	a	b	c
b	b	b	c
c	c	c	c

12. Determine whether the table below defines a group for $G=\{a, b, c, d, e, f\}$. State why or why not. (You may assume that the operation $*$ is associative.)

$*$	a	b	c	d	e	f
a	a	b	c	d	e	f
b	b	d	f	a	c	e
c	c	f	b	e	a	d
d	d	a	e	b	f	c
e	e	c	a	f	d	b
f	f	e	d	c	b	a

13. In the previous exercise, what is the inverse of d ? How do you know?
14. Compute the remainder of $25 \operatorname{modulo} 7 \quad$ (i.e. $\left.25 \equiv _(\bmod 7)\right)$
15. Compute the remainder of 48 modulo $5 \quad($ i.e. $48 \equiv \ldots(\bmod 5))$
16. Compute the remainder of 53 modulo $14 \quad$ (i.e. $\left.53 \equiv _(\bmod 14)\right)$
17. Determine whether 58 and 75 are congruent modulo 9 (Determine whether $58 \equiv$ $75(\bmod 9))$
18. Determine whether 43 and 59 are congruent modulo 16 (Determine whether $43 \equiv$ $59(\bmod 9))$
19. Compute gcd $(4,18)$
20. Compute gcd $(25,40)$
21. Compute gcd $(4,25)$
