MTH 4441 Exercises To study for Test #1

Fall 2023

Pat Rossi

Name _

- 1. In each case below, determine whether * is a **closed** binary operation on the given set. If it *IS* a **closed** binary operation, then determine whether it is commutative and/or associative.
 - (a) $(\mathbb{Z}, *)$ where $a * b = a + b^2$
 - (b) $(\mathbb{Z}, *)$ where $a * b = a^2 b^3$
 - (c) $(\mathbb{R}, *)$ where $a * b = \frac{a}{a^2 + b^2}$
 - (d) (Z,*) where $a * b = \frac{a^2 + 2ab + b^2}{a+b}$
 - (e) $(\mathbb{Z}, *)$ where a * b = a + b ab
 - (f) $(\mathbb{R}, *)$ where a * b = b
 - (g) $(\{-4, -2, 1, 2, 3\}, *)$ where a * b = |b|
 - (h) $(\{1, 2, 3, 6, 18\}, *)$ where a * b = ab
 - (i) $\left(\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}, * \right)$ where * is matrix addition
- 2. Let $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$, and let (\mathbb{Z}_6, \oplus) be a group, where \oplus is addition modulo 6. Construct the group table.
- 3. In the group (\mathbb{Z}_6, \oplus) , what is the order of the element 2? What is the order of the element 3?

(i.e., o(2) = ? o(3) = ?)

- 4. Construct the group table for (\mathbb{Z}_7, \oplus) .
- 5. Let $U_5 = \{1, 2, 3, 4\}$, and let (U_5, \odot) be a group, where \odot is multiplication modulo 5. Construct the group table.
- 6. Construct the group table for (U_3, \odot) .
- 7. Construct the group table for (U_7, \odot) .
- 8. Construct the group table for (U_6, \odot) .
 - (a) (U_6, \odot) is NOT a group. Give at least two reasons why it is not a group
- 9. Construct the group table for (U_4, \odot) .
 - (a) (U_4, \odot) is NOT a group. Give at least two reasons why it is not a group
- 10. Determine whether the table below defines a group for $G = \{a, b, c\}$. (State why or why not.)

*	a	b	c
a	a	b	с
b	b	a	c
с	с	b	a

11. Determine whether the table below defines a group for $G = \{a, b, c\}$. (State why or why not.)

*	a	b	c
a	a	b	с
b	b	b	с
с	с	с	с

12. Determine whether the table below defines a group for $G = \{a, b, c, d, e, f\}$. State why or why not. (You may assume that the operation * is associative.)

*	a	b	c	d	е	f
a	a	b	с	d	е	f
b	b	d	f	a	с	е
с	с	f	b	е	a	d
d	d	a	е	b	f	с
е	е	с	a	f	d	b
f	f	е	d	с	b	a

- 13. In the previous exercise, what is the inverse of d? How do you know?
- 14. Compute the remainder of 25 modulo 7 (i.e. $25 \equiv (\mod 7)$)
- 15. Compute the remainder of 48 modulo 5 (i.e. $48 \equiv (\mod 5)$)
- 16. Compute the remainder of 53 modulo 14 (i.e. $53 \equiv (\mod 14)$)
- 17. Determine whether 58 and 75 are congruent modulo 9 (Determine whether 58 \equiv 75 (mod 9))
- 18. Determine whether 43 and 59 are congruent modulo 16 (Determine whether 43 \equiv 59 (mod 9))
- 19. Compute gcd(4, 18)
- 20. Compute gcd(25, 40)
- 21. Compute gcd(4, 25)