
MTH 4436 Homework set 3.1, Page 43
Summer 2023

Pat Rossi Name

1. It has been mentioned that there are infinitely many primes of the form n2−2. Exhibit
five such primes.

n = n2 − 2 = 2 Prime?
2 2 Yes!
3 7 Yes!
4 14 No!
5 23 Yes!
6 34 No!
7 47 Yes!
8 62 No!
9 71 Yes!

2. Give an example to show that the following conjecture is not true: Every positive
integer can be written in the form p+ a2,where p is either prime or 1, and a ≥ 0.
Consider n = 25, and the difference between n = 25 and all of the primes (as well as
p = 1) less than 25.

p = 25− p = = a2 ???
1 24 No!
2 23 No!
3 22 No!
5 20 No!
7 18 No!
11 14 No!
13 12 No!
17 8 No!
19 6 No!
23 2 No!

3. Prove each of the assertions below:

(a) Any prime of the form 3n+ 1 is also of the form 6m+ 1

Proof. Observe that p = 2 is NOT of the form 3n+ 1.

Therefore, any prime of the form 3n+ 1 must be odd, and of the form 2k + 1.

i.e., p = 3n+ 1 = 2k + 1
⇒ 3n = 2k

⇒ 2|3n
⇒ (by Euclid’s Lemma) 2|n (i.e., n = 2m for some m ∈ N)
⇒ p = 3n+ 1 = 3 (2m) + 1 = 6m+ 1

i.e., p = 6m+ 1



ALTERNATE PROOF:
Proof. Let p be a prime of the form 3n+ 1. Note that either n is either even or
odd.
Case 1 (n is even)
Then n = 2k, for some integer, k.
⇒ p = 3n+ 1 = 3 (2k) + 1 = 6k + 1 = 6m+ 1

i.e., p = 6m+ 1, where m = k.

Case 2 (n is odd)
This is impossible, for if n is odd, then n = 2k + 1, for some integer, k.
⇒ p = 3n+ 1 = 3 (2k + 1) + 1 = 6k + 4 = 2 (3k + 2)

⇒ p is even ⇒ p = 2.

Since p = 2 is NOT of the form 3n+ 1, this contradicts the assumption that p is
of the form 3n+ 1.

Hence, if p is a prime of the form 3n+ 1, n must be even, and p = 6m+ 1, from
Case 1.

2



(b) Each integer of the form 3n+ 2 has a prime factor of this form.
Proof. (By contradiction) Observe that the proposition holds for n = 1, 2 as
3 (1) + 2 = 5,which is prime, and 3 (2) + 2 = 8 which has a prime factor of the
form 3 (0) + 2.

Suppose, for the sake of deriving a contradiction, that the proposition is false.
Let N = 3k + 2 be the smallest natural number for which the proposition fails.
Since we’re assuming that N = 3k + 2 has no prime factor of the form 3n+ 2, N
cannot be prime.
By the Fundamental Theorem of Arithmetic, N must have a prime divisor, p,
where p 6= N.
By the Division Algorithm, there are three possibilities:

1. p = 3m
In this case, note that m must equal 1, or else p cannot be prime. At any
rate, p - N (i.e., 3 - (3k + 2)). Hence, p 6= 3m.

2. p = 3m+ 2
This cannot happen, since we’ve assumed that N = 3k + 2 has no prime
factor of the form 3n+ 2.
Hence, only the third case remains:

3. p = 3m+ 1
Since p is a prime factor of N = 3k + 2, ∃ a natural number h such that
that N = 3k + 2 = p · h.
What form does h have?

1. h 6= 3j,because we have already observed that 3 - (3k + 2) .
2. h 6= 3j + 1, otherwise, N = 3k + 2 = p · h = (3m+ 1) (3j + 1) =
9mj + 3m + 3j + 1 = 3 (3mj +m+ j) + 1, which is NOT of the form
3k + 2.
Hence, only the third case remains:

3. h = 3j + 2
Since h < N, this implies that h = 3j + 2 has a prime factor of the form
3n+ 2. Therefore, N = 3k + 2 has a prime factor of the form 3n+ 2.
This contradicts our choice of k as the smallest natural number such that
our proposition fails.

Hence, each integer of the form 3n+ 2 has a prime factor of this form.
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Alternate Proof:
(By contradiction) Suppose, for the sake of deriving a contradiction, that the
proposition is false. LetN = 3n1+2 be a natural number for which the proposition
fails. Since we’re assuming that N = 3n1 + 2 has no prime factor of the form
3n+ 2, N cannot be prime.
By the Fundamental Theorem of Arithmetic, N = 3n1 + 2 must have two factors
p1, q1 > 1.

Observe that they must be of the form:
p1 = 3n2 + 2

q1 = 3k2 + 1

By our “contradiction hypothesis,” p1 = 3n2 + 2 is not prime. Hence, by the
Fundamental Theorem of Arithmetic, p1 = 3n2+2 must have two factors p2, q2 >
1.

Observe that they must be of the form:
p2 = 3n3 + 2

q2 = 3k3 + 1

By our “contradiction hypothesis,” p2 = 3n3 + 2 is not prime. Hence, by the
Fundamental Theorem of Arithmetic, p2 = 3n3+2 must have two factors p2, q2 >
1.

Observe that they must be of the form:
p3 = 3n4 + 2

q3 = 3k4 + 1

Proceeding inductively, we obtain an infinite, strictly decreasing sequence of nat-
ural numbers:

3n1 + 2, 3n2 + 2, 3n3 + 2, . . .

This contradicts the Well Ordering Principle which states that every non-empty
set of non-negative integers has a least element.
Since the assumption that there exists a natural number 3n+2 that doesn’t have
a prime factor of the same form leads to a contradiction, It must be false.
Hence, each integer of the form 3n+ 2 has a prime factor of this form.

(c) The only prime of the form n3 − 1 is 7.
Proof. Observe: n3 − 1 = (n− 1) (n2 + n+ 1) .
Note that n = 1 yields n3 − 1 = 0 (not prime).
Also, n = 2 yields n3 − 1 = 7 (prime).
For n > 2,we have n3 − 1 = (n− 1)︸ ︷︷ ︸

≥2

(
n2 + n+ 1

)︸ ︷︷ ︸
≥2

, and is therefore composite.
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(d) The only prime p for which 3p+ 1 is a perfect square is p = 5.
Proof. Suppose that 3p+1 is a perfect square. Then 3p+1 = k2 for some k ∈ N.
⇒ 3p = k2 − 1
⇒ 3p = (k + 1) (k − 1)
Since the Fundamental Theorem of Arithmetic tells us that the factorization of a
number into prime factors is unique, it must be the case that

k − 1 = 3 and (k + 1) = p

i.e., k − 1 = 3 and (k + 1) = 5.
Thus, k = 4, and 3p+ 1 = k2 = 16.
Therefore, p = 5.

(e) The only prime of the form n2 − 4 is 5.
Proof. Suppose that n2 − 4 is prime. Note that n ≥ 3, otherwise n2 − 4 is not a
natural number. Note also, that for n = 3, n2 − 4 = 5.
Thus, the prime number 5 is of the form n2 − 4.
Finally, note that if n ≥ 4, n2 − 4 = (n+ 2)︸ ︷︷ ︸

≥6

(n− 2)︸ ︷︷ ︸
≥2

and is therefore composite.

Thus, the only prime of the form n2 − 4 is 5.
(This proof was given to me by Olivia Dabbert. Her proof is (thankfully) much
simpler than mine!)

4. If p ≥ 5 is a prime number, Show that p2 + 2 is composite.
Proof. Since p is prime and p ≥ 5, p must be odd.
i.e., p = 6k + 1 or p = 6k + 5

Thus, either p2 + 2 = (6k + 1)2 + 2 = 36k2 + 12k + 3 = 3 (12k2 + 4k + 1) ,

or p2 + 2 = (6k + 5)2 + 2 = 36k2 + 60k + 27 = 3 (12k2 + 20k + 9) .

Either way, p2 + 2 is composite.

5. ~

(a) Given that p is prime and p|an, prove that pn|an.
Proof. By Corollary 1 (page 41), If p is a prime and p| (a1a2 . . . an) , then p|ak
for some k for 1 ≤ k ≤ n.
Thus, given that p|an, if we let ak = a for 1 ≤ k ≤ n, we have p| (a1a2 . . . an) and
the corollary applies. Therefore, p|ak (i.e., p|a).
⇒ a = pm for some m ∈ Z.
⇒ an = (pm)n = pnmn.

i.e., an = pnmn ⇒ pn|an.
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(b) If gcd (a, b) = p, a prime, what are the possible values of gcd (a2, b2) , gcd (a2, b) ,
gcd (a3, b2)?

gcd (a2, b2)

If gcd (a, b) = p, then either a or b has exactly one factor of p. (Otherwise, p2|a
and p2|b, and gcd (a, b) ≥ p2.)
Without loss of generality, let’s say that a has one factor of p.
By the Fundamental theorem of arithmetic, a and b can be factored into primes:
a = p · pr11 pr22 . . . p

rk
k and b = pi · qs11 qs22 . . . q

sj
j , for i ≥ 1, where pm 6= qn for

1 ≤ m ≤ k and 1 ≤ n ≤ j.
⇒ a2 = p2 · p2r11 p2r22 . . . p2rkk and b2 = p2i · q2s11 q2s22 . . . q

2sj
j

Observe that p is still the only prime factor that a and b have in common, but
now, both a and b have exactly a factor of p2 in common.
i.e., gcd (a2, b2) = p2.

gcd (a2, b)

Again, either a or b has exactly one factor of p. If a has exactly one factor of p,
then a = p · pr11 pr22 . . . p

rk
k and b = pi · qs11 qs22 . . . q

sj
j , for i ≥ 1, where pm 6= qn for

1 ≤ m ≤ k and 1 ≤ n ≤ j.
Thus a2 = p2 · p2r11 p2r22 . . . p2rkk and therefore, a2 has exactly two factors of p, and
b has at least one factor of p.
Thus, gcd (a2, b) = p if b has exactly one factor of p, and gcd (a2, b) = p2 if b has
more than one factor of p.
On the other hand, if b has exactly one factor of p, then a = pi · pr11 pr22 . . . p

rk
k and

b = p · qs11 qs22 . . . q
sj
j , for i ≥ 1, where pm 6= qn for 1 ≤ m ≤ k and 1 ≤ n ≤ j.

Thus, a2 = p2i · p2r11 p2r22 . . . p2rkk , and a2 and b have one factor of p in common.
In this case, gcd (a2, b) = p.

All cases considered:
gcd (a2, b) = p2 when b has at least two factors of p.
gcd (a2, b) = p when b has exactly one factor of p.
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gcd (a3, b2)

Again, either a or b has exactly one factor of p. If a has exactly one factor of p,
then a = p ·pr11 pr22 . . . p

rk
k and b = p

i ·qs11 qs22 . . . q
sj
j where pm 6= qn for 1 ≤ m ≤ k and

1 ≤ n ≤ j.
Thus a3 = p3 · p3r11 p3r22 . . . p3rkk and b2 = p2i · q2s11 q2s22 . . . q

2sj
j , for i ≥ 1.

Therefore, a3 has exactly three factors of p, and b2 has at least two factors of p.
In this case, gcd (a3, b2) = p2 if b has exactly one factor of p.
gcd (a3, b2) = p3 if b has more than one factor of p.
On the other hand, if b has exactly one factor of p, then a = pi · pr11 pr22 . . . p

rk
k and

b = p · qs11 qs22 . . . q
sj
j , for i ≥ 1, where pm 6= qn for 1 ≤ m ≤ k and 1 ≤ n ≤ j.

Thus, a3 = p3i · p3r11 p3r22 . . . p3rkk , and b2 = p2 · q2s11 q2s22 . . . q
2sj
j , and a3 and b2 have

two factors of p in common.
In this case, gcd (a3, b2) = p2.

All cases considered:
i.e., gcd (a3, b2) = p3 when b has more than one factor of p.
gcd (a3, b2) = p2 when b has exactly one factor of p.

6. Establish each of the following statements:

(a) Every integer of the form n4 + 4,with n > 1 is composite.
Proof. Observe: n4 + 4 = (n2 − 2n+ 2) (n2 + 2n+ 2)
If n = 1, then

(
n2 − 2n+ 2

)︸ ︷︷ ︸
=1

(
n2 + 2n+ 2

)︸ ︷︷ ︸
=5

= 1 · 5 which is prime.

For n > 1, both terms are greater than 1, and hence, n4+4 = (n2 − 2n+ 2) (n2 + 2n+ 2)
is composite.
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(b) If n > 4 is composite, then n divides (n− 1)!
Proof. Suppose that n > 4 is composite.
Then n has a prime factor p ≤

√
n.

Case 1: n = p2

In this case, we must show that (n− 1)! contains two distinct factors of p. Since
p =
√
n < n− 1, p is one of the factors of (n− 1)!

For the other factor of p, we claim that 2p ≤ n − 1, and hence, 2p is a factor of
(n− 1)!
To see this, observe:
n > 4

⇒ p =
√
n > 2

i.e., p > 2
⇒ p · p > 2 · p
i.e., p2 > 2p
But n = p2

Hence, n > 2p⇒ n− 1 ≥ 2p.
Case 2: n = pb with p 6= b
Again p <

√
n < n− 1, so p is a factor of (n− 1)!

We must show that b < n− 1, and hence, b is a factor of (n− 1)!
Since p ≥ 2,we have n = pb ≥ 2b
i.e., n ≥ 2b⇒ n

2
≥ b

Observe: n− 1 > n
2
for n > 2

Hence, n− 1 > n
2
≥ b.

i.e., n− 1 > b.
Therefore, b is a factor of (n− 1)!

(c) Any integer of the form 8n + 1 where n ≥ 1, is composite.
Proof. Observe: 8n+1 = (23)n+1 = (2n)3+13 = (2n + 1)

(
(2n)2 − 2n + 1

)
which

is composite.

(d) Each integer n > 11 can be written as the sum of two composite numbers.
Proof. Case 1: (n is even)
Since n is even, n = 2k for some k ≥ 6.
Hence, n = 2 (k − 3) + 6 (The sum of two composites)
Case 2: (n is odd)
Since n is odd, n = 2k + 1 for some k ≥ 5.
Hence, n = 2 (k − 4) + 9 (The sum of two composites)
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7. Find all the prime numbers that divide 50!

Observe: 50! = 50 · 49 · 48 · . . . · 3 · 2 · 1
By the corollary to Theorem 3.1, any prime p that divides this product must divide
one of these factors. Hence, 50! contains no prime factor greater than 50.

Furthermore, every prime factor less than 50 appears explicitly in the factorization
50! = 50 · 49 · 48 · . . . · 3 · 2 · 1.
Hence the prime factors of 50! are exactly the prime numbers less than 50.

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}

8. If p ≥ q ≥ 5, and p and q are both prime, prove that 24| (p2 − q2) .

Proof. Let the hypotheses be given. (i.e., Suppose that p ≥ q ≥ 5, and p and q are
both prime.)

Out proof hinges on four important observations.

Observation #1: p and q have the form 2k + 1, AND p and q can only have the
forms 3k + 1 or 3k + 2.

Since p and q are both prime and both greater than or equal to 5, neither p nor q is
even and neither p nor q is a multiple of 3.

Thus, p and q must have the form 2k + 1 (with reference to 2 as a divisor),

AND p and q can only have the forms 3k+1 or 3k+2 (with reference to 3 as a divisor).

Observation #2: ∀n ∈ N, n2 + n is even.

The reason for this is simple. Either n is even or it is odd.

If n is even, then n = 2k for some k ∈ N

⇒ n2 + n = n (n+ 1) = 2k (n+ 1) .

(i.e., 2| (n2 + n))

If n is odd, then n+ 1 is even, and n+ 1 = 2k for some k ∈ N,

⇒ n2 + n = n (n+ 1) = n (2k) = 2 (nk) .

(i.e., 2| (n2 + n))
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Observation #3: 8| (p2 − q2)

By Observation #1, p = 2j + 1 and q = 2k + 1 for some j, k ∈ N.

Thus, (p2 − q2) = (2j + 1)2 − (2k + 1)2 = (4j2 + 4j + 1)− (4k2 + 4k + 1)

= 4

(j2 + j)︸ ︷︷ ︸
even

−
(
k2 + k

)︸ ︷︷ ︸
even

 = 4 (2m) = 8m for some n ∈ N.

i.e., (p2 − q2) = 8m for some n ∈ N.

Therefore, 8| (p2 − q2)

Observation #4: 3| (p2 − q2)

By Observation #1, p and q can only have the forms 3k+ 1 or 3k+ 2 for some k ∈ N.

If p = 3j + 1 and q = 3k + 1, then

p2 − q2 = (3j + 1)2 − (3k + 1)2 = (9j2 + 6j + 1)− (9k2 + 6k + 1)

= [(9j2 + 6j)− (9k2 + 6k)] = 3 [(3j2 + 2j)− (3k2 + 2k)] = 3m for somem ∈ N

If p = 3j + 2 and q = 3k + 1, then

p2 − q2 = (3j + 2)2 − (3k + 1)2 = (9j2 + 12j + 4)− (9k2 + 6k + 1)

= [(9j2 + 12j + 3)− (9k2 + 6k)] = 3 [(3j2 + 4j + 1)− (3k2 + 2k)]

= 3m for some m ∈ N

(p = 3j + 1 and q = 3k + 2 is similar to the previous case.)

If p = 3j + 2 and q = 3k + 2, then

p2 − q2 = (3j + 2)2 − (3k + 2)2 = (9j2 + 12j + 4)− (9k2 + 12k + 4)

= [(9j2 + 12j)− (9k2 + 12k)] = 3 [(3j2 + 4j)− (3k2 + 4k)]

= 3m for some m ∈ N

Thus, in each case, 3| (p2 − q2) (end of Observation #4)

We have established that 8| (p2 − q2) and 3| (p2 − q2) .

Since 3 and 8 are relatively prime, their product 24 also divides (p2 − q2) , by Corollary
2, page 23.
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10. Prove: If p 6= 5 is an odd prime number, then either p2 − 1 or p2 + 1 is divisible by 10

Proof. Let the hypothesis be given. (i.e., Suppose that p 6= 5 is an odd prime number.)

Our strategy will be to show that 2| (p2 − 1) and 2| (p2 + 1) , and that either:

5| (p2 − 1) , in which case (2 · 5) | (p2 − 1) , by Euclid’s Lemma,

or

5| (p2 + 1) , in which case (2 · 5) | (p2 + 1) , by Euclid’s Lemma.

2| (p2 − 1) and 2| (p2 + 1)

To show that 2| (p2 − 1) and 2| (p2 + 1) , observe that since p is an odd prime, p = 2k+1,
for some natural number k.

⇒ p2 = (2k + 1)2 = 4k2 + 4k + 1 = 2 (2k2 + 2k) + 1

i.e., p2 = 2 (2k2 + 2k) + 1

Hence, p2 − 1 = [2 (2k2 + 2k) + 1]− 1 = 2 (2k2 + 2k)

i.e., 2| (p2 − 1)

Similarly, p2 + 1 = [2 (2k2 + 2k) + 1] + 1 = 2 (2k2 + 2k) + 2 = 2 (2k2 + 2k + 1)

i.e., 2| (p2 + 1)
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5| (p2 − 1) or 5| (p2 + 1)

Note that since p 6= 5 and p is a prime number, 5 - p.Otherwise, p would not be prime.

Thus, by the Division Algorithm, p must have one of the following four forms:

p = 5n+1, in which case, p2 = (5n+ 1)2 = 25n2+10n+1 = 5 (5n2 + 2n)+1 = 5k+1

p = 5n+2, in which case, p2 = (5n+ 2)2 = 25n2+20n+4 = 5 (5n2 + 4n)+4 = 5k+4

= (5k + 4) + 1− 1 = (5k + 5)− 1 = 5 (k + 1)− 1

p = 5n+3, in which case, p2 = (5n+ 3)2 = 25n2+30n+9 = 5 (5n2 + 6n+ 1)+4 = 5k+4

= (5k + 4) + 1− 1 = (5k + 5)− 1 = 5 (k + 1)− 1

p = 5n+ 4, in which case, p2 = (5n+ 4)2 = 25n2 + 40n+ 16 = 5 (5n2 + 8n+ 3) + 1 =
5k + 1

i.e., p2 must either have the form: p2 = 5k + 1 or p2 = 5 (k + 1)− 1

In the case in which p2 = 5k + 1, p2 − 1 = 5k. (i.e., 5| (p2 − 1))

In the case in which p2 = 5 (k + 1)− 1, p2 + 1 = 5 (k + 1) . (i.e., 5| (p2 + 1))

This exhausts all cases. In all cases, either 5| (p2 − 1) or 5| (p2 + 1)

Remark: The proof above ismy proof. A number of my students submitted a different
proof - similar, but with minor variations. I like their proof better. What do you think?

Alternate Proof: Submitted by Chelsey Adamson, Jackson Baker, Madison Butler,
Bayleigh Edberg, Emmaline Hughes, Clayton Lang, Meagan Long, Elizabeth Rowe,
Lauren Veazey,

Proof. Let the hypothesis be given. (i.e., Suppose that p 6= 5 is an odd prime number.)

Applying the Division Algorithm to p, using d = 10 as the divisor, there are 4
possibilities:

p = 10q + 1; p = 10q + 3; p = 10q + 7; p = 10q + 9.
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p = 10q + 1

In this case, p2 = (10q + 1)2 = 100q2 + 20q + 1

p2 − 1 = (100q2 + 20q + 1)− 1 = 100q2 + 20q = 10 (10q2 + 2q)

i.e., p2 − 1 = 10 (10q2 + 2q) , and consequently, 10| (p2 − 1)

p = 10q + 3

In this case, p2 = (10q + 3)2 = 100q2 + 60q + 9

p2 + 1 = (100q2 + 60q + 9) + 1 = 100q2 + 60q + 10 = 10 (10q2 + 6q + 1)

i.e., p2 + 1 = 10 (10q2 + 6q + 1) , and consequently, 10| (p2 + 1)

p = 10q + 7

In this case, p2 = (10q + 7)2 = 100q2 + 140q + 49

p2 + 1 = (100q2 + 140q + 49) + 1 = 100q2 + 140q + 50 = 10 (10q2 + 14q + 5)

i.e., p2 + 1 = 10 (10q2 + 14q + 5) , and consequently, 10| (p2 + 1)

p = 10q + 9

In this case, p2 = (10q + 9)2 = 100q2 + 180q + 81

p2 − 1 = (100q2 + 180q + 81)− 1 = 100q2 + 180q + 80 = 10 (10q2 + 18q + 8)

i.e., p2 − 1 = 10 (0q2 + 18q + 8) , and consequently, 10| (p2 − 1)

This exhausts all cases, and in each case either 10| (p2 − 1) or 10| (p2 + 1)
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9. Prove: A positive integer a > 1 is a perfect square if and only if, in the canonical form
of a, all of the exponents of the primes are even integers.

Proof. Let a > 1 be a positive integer.

(a is a perfect square.) ⇒ (In the canonical form of a, all of the exponents of the primes are even integers.)

Suppose that a > 1 is a perfect square.

Then a = b2, for some natural number b > 1

By the Fundamental Theorem of Arithmetic, b = pk11 p
k2
2 · · · pkrr , for primes p1 < p1 <

. . . < pr.

a = b2 =
(
pk11 p

k2
2 · · · pkrr

)2
= p2k11 p2k22 · · · p2krr

i.e., a = p2k11 p2k22 · · · p2krr .

Note that, in the canonical form of a, all of the exponents of the primes are even
integers.

(In the canonical form of a, all of the exponents of the primes are even integers.) ⇒ (a is a perfect square.)

Suppose that a > 1 and that, in the canonical form of a, all of the exponents of the
primes are even integers.

Then a = p2k11 p2k22 · · · p2krr , for primes p1 < p1 < . . . < pr.

⇒ a = p2k11 p2k22 · · · p2krr =
(
pk11 p

k2
2 · · · pkrr

)2
i.e., a is a perfect square.
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