MTH 4441 Test #1

 $\mathrm{Fall}\ 2023$

Pat Rossi

Name _____

1. Define: Group

- 2. Define: Binary operation
- 3. Define: Integers a and b congruent modulo n.
- 4. Give an alternate characterization of **congruence modulo** *n*.
- 5. Define: (\mathbb{Z}_n, \oplus) (the additive group of integers modulo n)
- 6. Define: (U_n, \odot) (the multiplicative group of integers modulo n)
- 7. **Prove:** If (G, *) is a group, and a, b are any elements of G, then $(a * b)^{-1} = b^{-1} * a^{-1}$

- 8. Define: The order of an element x of a group (G, *) (In your definition, specify either additive or multiplicative notation.)
- 9. **Prove:** The inverse of an element x in a group (G, *) is unique.

10. Construct the group table for (U_7, \odot)

11. In the previous exercise, determine the order of the element 3

12. Construct the group table for (\mathbb{Z}_5, \oplus)

13. In the previous exercise, determine the order of the element 4

- 14. Define what it means for a binary operation * to be associative.
- 15. Determine whether the operation *, given by a * b = ab + ba is an associative binary operation on the set \mathbb{R} .

16. Fill out the group table below:

*	e	a	b	c
e				
a				
b				
c				