Homework #7

Fall 2023

Pat Rossi

Name _

In exercises 1-17, The group \mathbb{Z}_n is the group (\mathbb{Z}_n, \oplus) , where \oplus is addition modulo n.

- 1. List the elements of the group $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
- 2. Determine whether or not $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is cyclic. If it is cyclic, list the generators.
- 3. Compute the sum of the elements (2,1,0) and (1,1,1) in the group $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
- 4. Compute the sum of the elements (2, 1, 0) and (2, 1, 1) in the group $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
- 5. List the elements of the group $\mathbb{Z}_6 \times \mathbb{Z}_2$
- 6. Determine whether or not $\mathbb{Z}_6 \times \mathbb{Z}_2$ is cyclic. If it is cyclic, list the generators.
- 7. Compute the sum of the elements (5,1) and (4,0) in the group $\mathbb{Z}_6 \times \mathbb{Z}_2$
- 8. Compute the sum of the elements (3, 1) and (4, 1) in the group $\mathbb{Z}_6 \times \mathbb{Z}_2$
- 9. List the elements of the group $\mathbb{Z}_4 \times \mathbb{Z}_3$
- 10. Determine whether or not $\mathbb{Z}_4 \times \mathbb{Z}_3$ is cyclic. If it is cyclic, list the generators.
- 11. Compute the sum of the elements (3,1) and (2,1) in the group $\mathbb{Z}_4 \times \mathbb{Z}_3$
- 12. Compute the sum of the elements (2,2) and (2,2) in the group $\mathbb{Z}_4 \times \mathbb{Z}_3$

For exercises, 13-16, use the following facts:

- gcd(g, n) is the greatest common divisor (greatest common factor) of natural numbers g and n.
- o(g) is the order of the element $g \in (\mathbb{Z}_m, +)$ and o(h) is the order of the element $h \in (\mathbb{Z}_n, +)$
- We can compute o(g) by observation or by using the formula in the next bullet point.

•
$$o(g) = \frac{m}{\gcd(g,m)}$$
; where m is the order of the group \mathbb{Z}_m . (i.e., $m = |\mathbb{Z}_m|$)

- $\operatorname{lcm}(m, n)$ is the *least common multiple* of integers m and n.
- The order of an element $(g, h) \in (\mathbb{Z}_m \times \mathbb{Z}_n, \oplus)$ is given by:

$$o(g,h) = \operatorname{lcm}(o(g), o(h))$$

where o(g) is the order of the element $g \in (\mathbb{Z}_m, +)$ and o(h) is the order of the element $h \in (\mathbb{Z}_n, +)$.

• Analogously, the order of an element $(g, h, k) \in (\mathbb{Z}_m \times \mathbb{Z}_n \times \mathbb{Z}_p, \oplus)$ is given by:

$$o(g, h, k) = \operatorname{lcm}(o(g), o(h), o(k))$$

where o(g) is the order of the element $g \in (\mathbb{Z}_m, +)$, o(h) is the order of the element $h \in (\mathbb{Z}_n, +)$, and o(k) is the order of the element $k \in (\mathbb{Z}_p, +)$.

- It may be helpful to know that, for natural numbers m, n, k; lcm (m, n, k) =lcm (lcm (m, n), k)
- 13. Calculate the order of the element (4, 9) in the group $\mathbb{Z}_{18} \times \mathbb{Z}_{18}$
- 14. Calculate the order of the element (7,5) in the group $\mathbb{Z}_{12} \times \mathbb{Z}_8$
- 15. Calculate the order of the element (8, 6, 4) in the group $\mathbb{Z}_{18} \times \mathbb{Z}_9 \times \mathbb{Z}_8$
- 16. Calculate the order of the element (8, 6, 4) in the group $\mathbb{Z}_9 \times \mathbb{Z}_{17} \times \mathbb{Z}_{10}$
- 17. Suppose that $(A, *) \leq (G, *)$ and that $(B, *) \leq (H, *)$. Show that $(A \times B, *) \leq (G \times H, *)$.