MTH 4436 HW Set 2.2

Summer 2023
Pat Rossi
Name \qquad

Set 2.2

1. Prove that if a and b are integers, with $b>0$, then there exist unique integers q and r satisfying:

$$
a=q b+r \quad \text { with } 2 b \leq r<3 b
$$

Observe: The Division Algorithm guarantees that if a and b are integers, with $b>0$, then there exist unique integers q^{\prime} and r^{\prime} satisfying:

$$
a=q^{\prime} b+r^{\prime} \quad \text { with } 0 \leq r^{\prime}<b
$$

If we define $r=r^{\prime}+2 b$, then $2 b \leq r<3 b$.
The trick now, is to define q such that $a=q b+r \quad$ with $2 b \leq r<3 b$.
To do this, we start with the relationship guaranteed by the Division Algorithm, namely:

$$
a=q^{\prime} b+r^{\prime} \quad \text { with } 0 \leq r^{\prime}<b
$$

Since $r=r^{\prime}+2 b$ (or equivalently, $r^{\prime}=r-2 b$), we can substitute $r-2 b$ for r^{\prime}. This yields:

$$
\begin{gathered}
a=q^{\prime} b+(r-2 b) \quad \text { with } 2 b \leq r<3 b \\
a=\left(q^{\prime}-2\right) b+r \quad \text { with } 2 b \leq r<3 b
\end{gathered}
$$

This suggests that we let $q=q^{\prime}-2$. This yields:

$$
a=q b+r \quad \text { with } 2 b \leq r<3 b
$$

2. Show that any integer of the form $6 k+5$ is also of the form $3 j+2$, but not conversely.

Let $n=6 k+5$. Then $n=6 k+5=3(2 k)+5=3(2 k)+3+2=3(2 k+1)+2$.

Thus, $n=6 k+5=3 j+2$, where $j=2 k+1$.
To show that the converse does NOT hold, let $n=3 j+2$.
For $j=2$, we have $n=3(2)+2=8$
If $n=3 j+2=6 k+5$, then $n=3 j+2=8=6 k+5$.
But $6 k+5=8 \Rightarrow 6 k=3 \Rightarrow k=\frac{1}{2}$, which is not an integer.
Hence, for $j=2, \quad n=3 j+2 \neq 6 k+5$
3. Use the Division Algorithm to establish the following:
(a) The square of any integer is either of the form $3 k$ or $3 k+1$.

Let n be an integer. By the Division Algorithm, either

$$
\begin{aligned}
& n=3 m \\
& n=3 m+1 \\
& n=3 m+2
\end{aligned}
$$

If $n=3 m$, then $n^{2}=(3 m)^{2}=9 m^{2}=3\left(3 m^{2}\right)=3 k$, for $k=3 m^{2}$
If $n=3 m+1$, then $n^{2}=(3 m+1)^{2}=9 m^{2}+6 m+1=3\left(3 m^{2}+2 m\right)+1=3 k+1$, for $k=3 m^{2}+2 m$

If $n=3 m+2$, then $n^{2}=(3 m+2)^{2}=9 m^{2}+12 m+4=9 m^{2}+12 m+3+1=$ $3\left(3 m^{2}+4 m+1\right)+1=3 k+1$, for $k=3 m^{2}+4 m+1$.

Hence, for any integer n, n^{2} is either of the form $3 k$ or $3 k+1$.
(b) The cube of any integer has one of the forms, $9 k, 9 k+1$, or $9 k+8$.

Let n be an integer. By the Division Algorithm, either

$$
\begin{aligned}
& n=3 m \\
& n=3 m+1 \\
& n=3 m+2
\end{aligned}
$$

If $n=3 m$, then $n^{3}=(3 m)^{3}=27 m^{3}=9\left(3 m^{3}\right)=9 k$, for $k=3 m^{3}$
If $n=3 m+1$, then $n^{3}=(3 m+1)^{3}=27 m^{3}+27 m^{2}+9 m+1=$ $9\left(3 m^{3}+3 m^{2}+m\right)+1=9 k+1$, for $k=3 m^{3}+3 m^{2}+m$

If $n=3 m+2$, then $n^{3}=(3 m+2)^{3}=27 m^{3}+54 m^{2}+36 m+8=$ $9\left(3 m^{3}+6 m^{2}+4 m\right)+8=9 k+8$, for $k=3 m^{3}+6 m^{2}+4 m$

Hence, for any integer n, n^{3} has one of the forms, $9 k, 9 k+1$, or $9 k+8$.
(c) The fourth power of any integer is either of the form $5 k$ or $5 k+1$.

Let n be an integer. By the Division Algorithm, either

$$
\begin{aligned}
& n=5 m \\
& n=5 m+1 \\
& n=5 m+2 \\
& n=5 m+3 \\
& n=5 m+4
\end{aligned}
$$

If $n=5 m$, then $n^{4}=(5 m)^{4}=625 m^{4}=5\left(125 m^{4}\right)=5 k$, for $k=125 m^{4}$
If $n=5 m+1$, then $n^{4}=(5 m+1)^{4}=625 m^{4}+500 m^{3}+150 m^{2}+20 m+1=$ $5\left(125 m^{4}+100 m^{3}+30 m^{2}+4 m\right)+1=5 k+1$, for $k=125 m^{4}+100 m^{3}+30 m^{2}+4 m$
If $n=5 m+2$, then $n^{4}=(5 m+2)^{4}=625 m^{4}+1000 m^{3}+600 m^{2}+160 m+16=$ $625 m^{4}+1000 m^{3}+600 m^{2}+160 m+15+1=$ $5\left(125 m^{4}+200 m^{3}+125 m^{2}+32 m+3\right)+1=$ $5 k+1$, for $k=125 m^{4}+200 m^{3}+125 m^{2}+32 m+3$

If $n=5 m+3$, then $n^{4}=(5 m+3)^{4}=625 m^{4}+1500 m^{3}+1350 m^{2}+540 m+81=$ $625 m^{4}+1500 m^{3}+1350 m^{2}+540 m+80+1=$ $5\left(125 m^{4}+300 m^{3}+270 m^{2}+108 m+16\right)+1=$ $5 k+1$, for $k=125 m^{4}+300 m^{3}+270 m^{2}+108 m+16$

If $n=5 m+4$, then $n^{4}=(5 m+4)^{4}=625 m^{4}+2000 m^{3}+2400 m^{2}+1280 m+256=$ $625 m^{4}+2000 m^{3}+2400 m^{2}+1280 m+255+1=$
$5\left(125 m^{4}+400 m^{3}+480 m^{2}+256 m+51\right)+1=$
$5 k+1$, for $k=125 m^{4}+400 m^{3}+480 m^{2}+256 m+51$
Hence, for any integer n, n^{4} is either of the form $5 k$ or $5 k+1$.
4. Prove that $3 a^{2}-1$ is never a perfect square.

Observe that $3 a^{2}-1=3\left(a^{2}-1\right)+2=3 k+2$, for $k=a^{2}-1$.
The results of problem 3.a tell us that the square of an integer must either be of the form $3 k$ or $3 k+1$. Hence, $3 a^{2}-1=3 k+2$ cannot be a perfect square.
5. For $n \geq 1$, prove that $n(n+1)(2 n+1) / 6$ is an integer.

Let n be an integer. By the Division Algorithm, either

$$
\begin{aligned}
& n=6 m \\
& n=6 m+1 \\
& n=6 m+2 \\
& n=6 m+3 \\
& n=6 m+4 \\
& n=6 m+5
\end{aligned}
$$

If $n=6 m$, then $n(n+1)(2 n+1) / 6=6 m(6 m+1)(2(6 m)+1) / 6=$ $\left(432 m^{3}+108 m^{2}+6 m\right) / 6=72 m^{3}+18 m^{2}+m$
i.e., $n(n+1)(2 n+1) / 6$ is an integer, for $n=6 m$

If $n=6 m+1$, then $n(n+1)(2 n+1) / 6=(6 m+1)[(6 m+1)+1][2(6 m+1)+1] / 6=$ $\left(432 m^{3}+324 m^{2}+78 m+6\right) / 6=72 m^{3}+54 m^{2}+13 m+1$
i.e., $n(n+1)(2 n+1) / 6$ is an integer, for $n=6 m+1$

If $n=6 m+2$, then $n(n+1)(2 n+1) / 6=(6 m+2)[(6 m+2)+1][2(6 m+2)+1] / 6=$ $\left(432 m^{3}+540 m^{2}+222 m+30\right) / 6=72 m^{3}+90 m^{2}+37 m+5$
i.e., $n(n+1)(2 n+1) / 6$ is an integer, for $n=6 m+2$

If $n=6 m+3$, then $n(n+1)(2 n+1) / 6=(6 m+3)[(6 m+3)+1][2(6 m+3)+1] / 6=$ $\left(432 m^{3}+756 m^{2}+438 m+84\right) / 6=72 m^{3}+126 m^{2}+73 m+14$
i.e., $n(n+1)(2 n+1) / 6$ is an integer, for $n=6 m+3$

If $n=6 m+4$, then $n(n+1)(2 n+1) / 6=(6 m+4)[(6 m+4)+1][2(6 m+4)+1] / 6=$ $\left(432 m^{3}+972 m^{2}+726 m+180\right) / 6=72 m^{3}+162 m^{2}+121 m+30$
i.e., $n(n+1)(2 n+1) / 6$ is an integer, for $n=6 m+4$

If $n=6 m+5$, then $n(n+1)(2 n+1) / 6=(6 m+5)[(6 m+5)+1][2(6 m+5)+1] / 6=$ $\left(432 m^{3}+1188 m^{2}+1086 m+330\right) / 6=72 m^{3}+198 m^{2}+181 m+55$
i.e., $n(n+1)(2 n+1) / 6$ is an integer, for $n=6 m+5$

Thus, $n(n+1)(2 n+1) / 6$ is an integer for all integers, n.
6. Show that the cube of any integer is of the form $7 k$ or $7 k \pm 1$.

Let n be an integer. By the Division Algorithm, either

$$
\begin{aligned}
& n=7 k \\
& n=7 k+1 \\
& n=7 k+2 \\
& n=7 k+3 \\
& n=7 k+4 \\
& n=7 k+5 \\
& n=7 k+6
\end{aligned}
$$

If $n=7 m$, then $n^{3}=(7 m)^{3}=343 m^{3}=7\left(49 m^{3}\right)=7 k$.
Hence, if $n=7 m$, then $n^{3}=7 k$, for $k=49 m^{3}$
If $n=7 m+1$, then $n^{3}=(7 m+1)^{3}=343 m^{3}+147 m^{2}+21 m+1=$ $7\left(49 m^{3}+21 m^{2}+3 m\right)+1=7 k+1$.
Hence, if $n=7 m+1$, then $n^{3}=7 k+1$, for $k=49 m^{3}+21 m^{2}+3 m$
If $n=7 m+2$, then $n^{3}=(7 m+2)^{3}=343 m^{3}+294 m^{2}+84 m+8=$ $343 m^{3}+294 m^{2}+84 m+7+1=7\left(49 m^{3}+42 m^{2}+12 m+1\right)+1=7 k+1$.
Hence, if $n=7 m+1$, then $n^{3}=7 k+1$, for $k=49 m^{3}+42 m^{2}+12 m+1$
If $n=7 m+3$, then $n^{3}=(7 m+3)^{3}=343 m^{3}+441 m^{2}+189 m+27=$ $343 m^{3}+441 m^{2}+189 m+28-1=7\left(49 m^{3}+63 m^{2}+27 m+4\right)-1=7 k-1$.
Hence, if $n=7 m+3$, then $n^{3}=7 k-1$, for $k=49 m^{3}+63 m^{2}+27 m+4$
If $n=7 m+4$, then $n^{3}=(7 m+4)^{3}=343 m^{3}+588 m^{2}+336 m+64=$ $343 m^{3}+588 m^{2}+336 m+63+1=7\left(49 m^{3}+84 m^{2}+48 m+9\right)+1=7 k+1$.
Hence, if $n=7 m+4$, then $n^{3}=7 k+1$, for $k=49 m^{3}+84 m^{2}+48 m+9$
If $n=7 m+5$, then $n^{3}=(7 m+5)^{3}=343 m^{3}+735 m^{2}+525 m+125=$ $343 m^{3}+735 m^{2}+525 m+126-1=7\left(49 m^{3}+105 m^{2}+75 m+18\right)-1=7 k-1$.
Hence, if $n=7 m+5$, then $n^{3}=7 k-1$, for $k=49 m^{3}+105 m^{2}+75 m+18$
If $n=7 m+6$, then $n^{3}=(7 m+6)^{3}=343 m^{3}+882 m^{2}+756 m+216=$ $343 m^{3}+882 m^{2}+756 m+217-1=7\left(49 m^{3}+126 m^{2}+108 m+31\right)-1=7 k-1$.
Hence, if $n=7 m+5$, then $n^{3}=7 k-1$, for $k=49 m^{3}+126 m^{2}+108 m+31$
Hence, the cube of any integer is of the form $7 k$ or $7 k \pm 1$.
7. Prove that no integer in the following sequence is a perfect square:

$$
11,111,1111,11111, \ldots
$$

First, observe that the first term, 11, is not a perfect square.
Next. observe that after the first term of the sequence, a typical term, $111 \ldots 111$, can be written as

$$
111 \ldots 108+3=4 k+3
$$

By an earlier observation, any perfect square fits either the form $4 k$ or the form $4 k+1$. Hence, no term in the sequence can be a perfect square.

