Differential Equations Practice Test #1A - Solutions

 $\mathrm{Spring}\ 2004$

Pat Rossi

Name _____

Solutions

1. Solve: $\frac{dy}{dx} = \frac{x}{y}; \quad y(0) = 16$

Separate!

$$\frac{dy}{dx} = \frac{x}{y} \Rightarrow ydy = xdx$$

Integrate!

$$\int y dy = \int x dx \Rightarrow \frac{y^2}{2} = \frac{x^2}{2} + C \Rightarrow y^2 = x^2 + C_1$$

Given the initial condition, y(0) = 16, we can solve for C.

$$\Rightarrow 16^2 = 0^2 + C_1 \Rightarrow C_1 = 16^2$$

So our particular solution is $y^2 = x^2 + 16^2$

2. Solve: xy' = 3x + 2y; y(1) = 1

We can't separate variables on this one. BUT, there are two different ways that we can solve the equation.

Method #1 -(First Order Linear)

Rewrite as: $y' = 3 + 2x^{-1}y$

$$\Rightarrow y' - 2x^{-1}y = 3$$
$$\Rightarrow y' + \underbrace{\left(-2x^{-1}\right)}_{P(x)}y = \underbrace{3}_{Q(x)}$$

(a) 1. Our integrating factor is $e^{\int P(x)dx} = e^{\int -2x^{-1}dx} = e^{-2\ln(x)} = e^{\ln(x^{-2})} = x^{-2}$

- 2. Next, we multiply both sides of the equation by the integrating factor. $y'x^{-2} 2x^{-3}y = 3x^{-2}$
- 3. The left hand side must be the derivative of a product (this is the entire reason that we multiply both sides by the integrating factor). That product is always y times the integrating factor. Rewrite the left hand side as such.

$$\Rightarrow \frac{d}{dx} \left[yx^{-2} \right] = 3x^{-2}$$

4. Integrate!

$$\Rightarrow \int \frac{d}{dx} \left[yx^{-2} \right] dx = \int 3x^{-2} dx$$
$$\Rightarrow yx^{-2} = -3x^{-1} + C$$

5. Divide by the integrating factor

 $\Rightarrow y = -3x + Cx^2$

Recall: y(1) = 1 We can use this initial condition to find C.

$$\Rightarrow 1 = -3(1) + C(1)^2 \Rightarrow C = 4$$

So our (particular) solution is $y = 4x^2 - 3x$

Method #2 - (Use the substitution, $v = \frac{y}{x}$)

Given, xy' = 3x + 2y, we can divide both sides by x, yielding: $y' = 3 + 2\frac{y}{x}$ If we let $v = \frac{y}{x}$, then y = vx, $\Rightarrow \frac{dy}{dx} = \frac{dv}{dx}x + v$ Substituting into the equation $y' = 3 + 2\frac{y}{x}'$ we have:

$$\frac{dv}{dx}x + v = 3 + 2v$$

Now Separate!

$$\Rightarrow \frac{dv}{dx}x = 3 + v \Rightarrow \frac{1}{3+v}x\frac{dv}{dx} = 1 \Rightarrow \frac{1}{3+v}dv = \frac{1}{x}dx$$

Integrate!

$$\int \frac{1}{3+v} dv = \int \frac{1}{x} dx \Rightarrow \ln(3+v) = \ln(x) + C \Rightarrow e^{\ln(3+v)} = e^{\ln(x)+C} \Rightarrow 3+v = e^{\ln(x)} \underbrace{e^C}_{\text{constant}} \Rightarrow 3+v = C_1 e^{\ln(x)} \Rightarrow 3+v = C_1 x \Rightarrow 3+\frac{y}{x} = C_1 x \Rightarrow 3x+y = C_1 x^2 \Rightarrow y = C_1 x^2 - 3x$$

(a) 1. **Recall:** y(1) = 1 We can use this initial condition to find C.

$$\Rightarrow 1 = C_1 \left(1 \right)^2 - 3 \left(1 \right) \Rightarrow C_1 = 4$$

So our (particular) solution is $y = 4x^2 - 3x$

3. Solve: $\frac{dy}{dx} - x^2 + 3x = 0$

Separate!

$$dy = (x^2 - 3x) \, dx$$

Integrate!

$$\int dy = \int (x^2 - 3x) \, dx \Rightarrow y = \frac{x^3}{3} - \frac{3}{2}x^2 + C$$

4. Solve: $\frac{dy}{dx} = -\frac{x+y}{x}$; Show that this is an exact differential equation, and solve accordingly.

Rewrite as

$$xdy = -(x+y) dx \Rightarrow \underbrace{(x+y)}_{M} dx + \underbrace{x}_{N} dy = 0$$

Observe: $\frac{\partial M}{\partial y} = 1 = \frac{\partial N}{\partial x}$ Hence, the equation is exact.

For our solution, we are looking for a function, U such that $\frac{\partial U}{\partial x} = M$ and $\frac{\partial U}{\partial y} = N$. To find U, integrate:

$$U = \int \frac{\partial U}{\partial x} \partial x = \int M \partial x = \int (x+y) \, \partial x = \frac{x^2}{2} + yx + F(y) + C$$

Also:

$$U = \int \frac{\partial U}{\partial y} \partial y = \int N \partial y = \int x \partial y = yx + G(x) + C$$

To define U completely (i.e., determine the identity of F(y) and G(x)), we must compare the two expressions for U.

$$U = \frac{x^{2}}{2} + yx + F(y) + C = yx + G(x) + C$$

By comparing all sides of the equation, we have $G(x) = \frac{x^2}{2}$ and F(y) = 0

$$\Rightarrow U = \frac{x^2}{2} + yx + C$$

5. Show that $y = A_1 \cos(3x) + B_1 \sin(3x)$ is a solution of the differential equation y'' + 9y = 0.

Observe:

$$y' = -3A_1 \sin(3x) + 3B_1 \cos(3x)$$
$$y'' = -9A_1 \cos(3x) - 9B_1 \sin(3x)$$

Plugging y, y', and y'' into the differential equation y'' + 9y = 0, we have:

$$\underbrace{(-9A_1\cos(3x) - 9B_1\sin(3x))}_{y''} + \underbrace{9(A_1\cos(3x) + B_1\sin(3x))}_{9y} = 0$$

Thus, $y = A_1 \cos(3x) + B_1 \sin(3x)$ is a solution of the differential equation y'' + 9y = 0.

- 6. Classify the following according to order and linearity.
 - (a) y'' + y' = x

Order 2 (because y'' is the highest order derivative) and **linear** (because all derivatives are raised to the first power)

(b) $y'' + y = x^2$

Order 2 (because y'' is the highest order derivative) and **linear** (because all derivatives are raised to the first power)

(c) $\frac{dy}{dx} = \frac{x}{1+y^2}$

Order 1 (because $\frac{dy}{dx}$ is the highest order derivative) and **non-linear** (because y is squared and also because y appears in the denominator)

(d) $\frac{dy}{dx} = \frac{y^2}{x^2}$

Order 1 (because $\frac{dy}{dx}$ is the highest order derivative) and **non-linear** (because y is squared)

(e) $y^{(4)} - y''' + xyy' = 0$

Order 4 (because $y^{(4)}$ is the highest order derivative) and **non-linear** (because y and y' appear together in the same term, essentially making the term xyy' have degree 2)

(f) $y^{(4)} - y''' + x^2y' = x^4 - 3$

Order 4 (because $y^{(4)}$ is the highest order derivative) and **linear** (because all derivatives are raised to the first power)

7. Solve: $\frac{dI}{dt} + 5I = 10;$ I(0) = 0; assume that I < 2

This can be done by "Separation of Variables."

$$\frac{dI}{dt} + 5I = 10 \Rightarrow \frac{dI}{dt} = -5I + 10 \Rightarrow dI = (-5I + 10) dt \Rightarrow \frac{dI}{(-5I + 10)} = dt$$

Now integrate!

$$\int \frac{dI}{(-5I+10)} = \int dt \Rightarrow \int \underbrace{\frac{1}{(-5I+10)}}_{u^{-1}} \underbrace{\frac{dI}{-\frac{1}{5}du}}_{u^{-1}} = \int dt \Rightarrow \int u^{-1} \left(-\frac{1}{5}du\right) = \int dt$$

$$u = -5I + 10$$

$$\frac{du}{dI} = -5$$

$$du = -5dt$$

$$-\frac{1}{5}du = dt$$

$$\Rightarrow -\frac{1}{5} \int u^{-1} du = \int dt \Rightarrow -\frac{1}{5} \ln |u| = t + C \Rightarrow \ln |u| = -5t + C_1 \Rightarrow \ln |-5I + 10| = -5t + C_1 \Rightarrow \ln (-5I + 10) = -5t + C_1 \Rightarrow e^{\ln(-5I+10)} = e^{-5t+C_1}$$

$$\Rightarrow -5I + 10 = e^{-5t} e^{C_1} \Rightarrow -5I + 10 = C_2 e^{-5t} \Rightarrow -5I = C_2 e^{-5t} - 10 \Rightarrow I = C_3 e^{-5t} + 2$$

Since $I(0) = 0$, we have $0 = C_3 e^{-5(0)} + 2 \Rightarrow 0 = C_3 + 2 \Rightarrow C_3 = -2.$

Thus, $I = -2e^{-5t} + 2$ is the unique particular solution.

8. Solve: $y' + \frac{y}{x} = 1$ (assume that x > 0)

Method #1

This is a Linear, First Order Diff. Eq., $y' + \underbrace{\frac{1}{x}}_{P(x)} y = \underbrace{1}_{Q(x)}$ so we'll solve accordingly.

- 1. Our integrating factor is $e^{\int P(x)dx} = e^{\int \frac{1}{2}dx} = e^{\ln(x)} = e^{\ln(x)} = x$ (a)
 - 2. Next, we multiply both sides of the equation by the integrating factor.

$$y'x + x\left(\frac{1}{x}y\right) = x \cdot 1 \Rightarrow y'x + y = x$$

3. The left hand side must be the derivative of a product (this is the entire reason that we multiply both sides by the integrating factor). That product is always y times the integrating factor. Rewrite the left hand side as such.

$$\Rightarrow \frac{d}{dx}[yx] = x$$

4. Integrate!

$$\Rightarrow \int \frac{d}{dx} \left[yx \right] dx = \int x dx$$
$$\Rightarrow yx = \frac{1}{2}x^2 + C$$

5. Divide by the integrating factor

$$\Rightarrow y = \frac{1}{2}x + cx^{-1}$$