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1.
√
2 is an irrational number.

Proof. Suppose, for the sake of contradiction, that
√
2 is rational.Then there exist

integers m and n, with n 6= 0, such that √2 = m
n
.

Without loss of generality, we can assume that m and n are relatively prime.*

⇒√2 = m
n

⇒ 2 = m2

n2

⇒ 2n2 = m2

⇒ m2 is even

⇒ m is even.

⇒ ∃ k ∈ Z such that m = 2k.

Thus, 2n2 = m2 = (2k)2 = 4k2

i.e., 2n2 = 4k2

⇒ n2 = 2k2

⇒ n2 is even

⇒ n is even

i.e., m and n are both even.

This contradicts the assumption that m and n are relatively prime.

Since the assumption that
√
2 is rational lead us to this contradiction,

√
2 must be

irrational.

*If m and n are not relatively prime, then let d be the greatest common divisor of
m and n. There exist relatively prime integers m1 and n1 such that m = dm1 and
n = dn1. Thus we can write

√
2 = m

n
= dm1

dn1
= m1

n1
, and

√
2 is written as the quotient

of relatively prime integers.



2. The set of positive rational numbers Q+ is denumerable.

Consider the table of ordered pairs below:

(1, 1) → (1, 2) (1, 3) → (1, 4) (1, 5) → . . .
. % . %

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) . . .
↓ % . %

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) . . .
. %

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) . . .
↓ %

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) . . .
...

...
...

...
...

If we consider the ordered pair (i, j) in the ith row and jth column to represent the
quotient of integers i

j
, then every positive rational number appears in the table at least

once. (e.g., the rational number m
n
appears in the mth row and nth column.)

Furthermore, the arrows in the table induce an exhaustive ordering of the positive
rational numbers as follows:

1, 1
2
, 2, 3, 1

3
, 1
4
, 2
3
, 3
2
, 4, 5, 1

5
, . . .

(Note that we have discarded repititions of rationals if they occur. e.g., we have
discarded (2, 2) because it is equaivalent to (1, 1) which is already on our list.)

Note also that since the positive rationals are ordered, they are in a one to one
correspondence with the natural numbers.

Hence, the positive rational numbers are denumerable.

3. The set of negative rational numbers Q− is denumerable.

Proof. The function f : Q+ → Q− given by f
³
m
n

´
= −m

n
is clearly one to one and

onto.

For if f (x1) = f (x2) ,

Then −x1 = −x2
⇒ x1 = x2, thus f is one to one.

Also, given y ∈ Q−, we can choose x ∈ Q+, given by x = −y.
This yields f (x) = −x = − (−y) = y.

Thus, f is onto.
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4. The union of a denumerable set and a finite set is denumerable (you can assume that
the two sets are disjoint).

Proof. Let A = {a1, a2, . . . , ak} and B = {b1, b2, b3, . . .} .

Then A is finite and B is denumerable.

Observe: N = { 1, 2, 3, . . . , k, k + 1, k + 2, k + 3, . . . }
f ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

(A ∪B) = { a1, a2, a3, . . . , ak b1, b2, b3, . . . }

Define f : N→ (A ∪B) by f (n) =
⎧⎪⎨⎪⎩

an if n ≤ k

bn−k if n > k

Clearly from the diagram above, f is one to one and onto. Hence, (A ∪B) is denumerable.

5. The union of two (disjoint) denumerable sets is denumerable.

Proof. Let A = {a1, a2, a3, . . .} and B = {b1, b2, b3, . . .}

Observe:

N = { 1, 2, 3, 4, 5, 6, . . . }
f ↓ ↓ ↓ ↓ ↓ ↓ ↓

(A ∪B) = { a1, b1, a2, b2, a3, b3, . . . }

Define f : N→ (A ∪B) by f (n) =
⎧⎪⎨⎪⎩

an+1
2

if n is odd

bn
2

if n is even

Clearly from the diagram above, f is one to one and onto. Hence, (A ∪B) is denumerable.

6. The set of rational numbers is denumerable (countable).

Proof. Q+ ∪ {0} is the union of a denumerable set and a finite set, hence it is
denumerable.

The entire set of rationals can be expressed as Q =(Q+ ∪ {0}) ∪ Q−, which is the
union of two denumerable sets, hence denumerable.
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7. The set of real numbers in the interval [0, 1] is uncountable (non-denumerable).

Proof. (By contradiction) Suppose, for the sake of deriving a contradiction, that the
set of real numbers in the interval [0, 1] is denumerable.

Then the entire set of real numbers in the interval [0, 1] can be ordered (i.e., put into
a one to one correspondence with the natural numbers).

Consider such an exhaustive ordering (or list):

x1 = 0.x11x12x13 . . .

x2 = 0.x21x22x23 . . .

x3 = 0.x31x32x33 . . .
...

xn = 0.xn1xn2xn3 . . . xnn . . .
...

Here, xij is the jth decimal digit of xi.

Also, if xi can be written in terminating and non-terminating form (e.g., 0.5 can be
written as 0.499999 . . .), then we choose the non-terminating form.

(Note that if we follow this convention, that 0 = 0.00000 . . . and 1 = 0.99999 . . .)

Define y ∈ [0, 1] as follows:
y = 0.y1y2y3 . . . yn . . . where yi is the ith decimal digit of y and yi is given by

yi =

⎧⎪⎨⎪⎩
5 if xii 6= 5

6 if xii = 5

Again, note that 0 < y < 1.

Our hypothesis has led us to conclude that the list above is an exhaustive list of real
numbers in the interval [0, 1] . Hence, y must be on the list somewhere.

Observe, however, that for j = 1, 2, 3, 4, . . . y 6= xj

(If y were equal to xj for some j = 1, 2, 3, 4, . . . , then they would necessarily have the
same digit at the jth decimal place. However, we have defined y in such a way that
this can’t happen.)

Hence, y is not on the list above.

This contradicts our assumption that the entire set of real numbers in the interval [0, 1]
is denumerable and can, therefore, be placed in an ordered list.
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Since the assumption that the entire set of real numbers in the interval [0, 1] is denu-
merable leads to a contradiction, the assumption must be false.

Hence, the entire set of real numbers in the interval [0, 1] is non-denumerable (uncountable).
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