Homework \#7 - Direct Products
 Fall 2023

Pat Rossi
Name \qquad

Def - Given groups $\left(G, *_{G}\right)$ and $\left(H, *_{H}\right)$, the Product of $\left(G, *_{G}\right)$ and $\left(H, *_{H}\right)$, denoted $G \times H$, is the group whose elements are ordered pairs of the form (g, h) such that $g \in G$ and $h \in H$. The product (or sum) of elements in $G \times H$ are computed component-wise, as follows:

$$
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} *_{G} g_{2}, h_{1} *_{H} h_{2}\right)
$$

The Product of three or more groups is defined analogously.
In exercises $1-17$, The group \mathbb{Z}_{n} is the group $\left(\mathbb{Z}_{n}, \oplus\right)$, where \oplus is addition modulo n.

1. List the elements of the group $\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

Note: The elements of $\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are ordered triples (a, b, c) such that $a \in \mathbb{Z}_{3}, b \in \mathbb{Z}_{2}$, and $c \in \mathbb{Z}_{2}$.
Since the second and third components of the group elements (a, b, c) can only be 0 or 1 , the easiest way to list the elements is probably to list all group elements having second and third components of 0,0 then 0,1 then 1,0 then 1,1 .

Thus the elements of $\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are:
$\{(0,0,0) ;(1,0,0) ;(2,0,0) ;(0,0,1) ;(1,0,1) ;(2,0,1) ;(0,1,0) ;(1,1,0) ;(2,1,0) ;(0,1,1) ;(1,1,1) ;(2,1,1)\}$
2. Determine whether or not $\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is cyclic. If it is cyclic, list the generators.

Recall: $\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}, \oplus\right)$, is cyclic exactly when $n_{1}, n_{2}, \ldots, n_{k}$ are "pairwise relatively prime."
$3,2,2$ are not "pairwise relatively prime."
Therefore, $\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is NOT cyclic.
3. Compute the sum of the elements $(2,1,0)$ and $(1,1,1)$ in the group $\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

Note: The operation on the first component is addition modulo 3
The operation on the second and third components is addition modulo 2

$$
(2,1,0) \oplus(1,1,1)=((2+1),(1+1),(0+1))=(0,0,1)
$$

4. Compute the sum of the elements $(2,1,0)$ and $(2,1,1)$ in the group $\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

Note: The operation on the first component is addition modulo 3
The operation on the second and third components is addition modulo 2

$$
(2,1,0) \oplus(2,1,1)=((2+2),(1+1),(0+1))=(1,0,1)
$$

5. List the elements of the group $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$

Note: The elements of $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$ are ordered pairs (a, b) such that $a \in \mathbb{Z}_{6}$ and $b \in \mathbb{Z}_{2}$.
Since the second component of the group elements can only be 0 or 1 , the easiest way to list the elements is probably to list all group elements having second component of 0 and then 1 .

Thus the elements of $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$ are:
$\{(0,0) ;(1,0) ;(2,0) ;(3,0) ;(4,0) ;(5,0) ;(0,1) ;(1,1) ;(2,1) ;(3,1) ;(4,1) ;(5,1)\}$
6. Determine whether or not $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$ is cyclic. If it is cyclic, list the generators.

Recall: ($\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}, \oplus$), is cyclic exactly when $n_{1}, n_{2}, \ldots, n_{k}$ are "pairwise relatively prime."

6 and 2 are not "pairwise relatively prime."
Thus, $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$ is NOT cyclic.
7. Compute the sum of the elements $(5,1)$ and $(4,0)$ in the group $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$

Note: The operation on the first component is addition modulo 6
The operation on the second component is addition modulo 2

$$
(5,1) \oplus(4,0)=((5+4),(1+0))=(3,1)
$$

8. Compute the sum of the elements $(3,1)$ and $(4,1)$ in the group $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$

Note: The operation on the first component is addition modulo 6
The operation on the second component is addition modulo 2

$$
(3,1) \oplus(4,1)=((3+4),(1+1))=(1,0)
$$

9. List the elements of the group $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$

Since the second component of the group elements can only be 0,1 or 2 , the easiest way to list the elements is probably to list all group elements having second component of 0 , then 1 , and then 2 .
$\{(0,0) ;(1,0) ;(2,0) ;(3,0) ;(0,1) ;(1,1) ;(2,1) ;(3,1) ;(0,2) ;(1,2) ;(2,2) ;(3,2)\}$
10. Determine whether or not $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$ is cyclic.

Recall: $\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}, \oplus\right)$, is cyclic exactly when $n_{1}, n_{2}, \ldots, n_{k}$ are "pairwise relatively prime."

4 and 3 are "pairwise relatively prime."
Therefore, $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$ IS cyclic.
Recall also: If $\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}, \oplus\right)$ is cyclic, then the generators are of the form:
$\left(g_{1}, g_{2}, \ldots, g_{n}\right)$, where g_{i} is a generator of $\mathbb{Z}_{n_{i}}$
Since the generators of \mathbb{Z}_{4} are 1 and 3 , and the generators of \mathbb{Z}_{3} are 1 and 2 , the generators of $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$ are $(1,1),(1,2),(3,1)$, and $(3,2)$.
11. Compute the sum of the elements $(3,1)$ and $(2,1)$ in the group $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$

Note: The operation on the first component is addition modulo 4
The operation on the second component is addition modulo 3

$$
(3,1) \oplus(2,1)=((3+2),(1+1))=(1,2)
$$

12. Compute the sum of the elements $(2,2)$ and $(2,2)$ in the group $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$

Note: The operation on the first component is addition modulo 4
The operation on the second component is addition modulo 3

$$
(2,2) \oplus(2,2)=((2+2),(2+2))=(0,1)
$$

13. Calculate the order of the element $(4,9)$ in the group $\mathbb{Z}_{18} \times \mathbb{Z}_{18}$
$o(4)$ is the order of 4 as an element of \mathbb{Z}_{18}
$o(4)=\frac{18}{\operatorname{gcd}(4,18)}=\frac{18}{2}=9$
$o(9)$ is the order of 9 as an element of \mathbb{Z}_{18}
$o(9)=\frac{18}{\operatorname{gcd}(9,18)}=\frac{18}{9}=2$
$o(4,9)$ is the order of $(4,9)$ as an element of $\mathbb{Z}_{18} \times \mathbb{Z}_{18}$
$o(4,9)=\operatorname{lcm}(o(4), o(9))=\operatorname{lcm}(9,2)=\frac{9 \cdot 2}{\operatorname{gcd}(9,2)}=\frac{18}{1}=18$
$o(4,9)=18$
(Note: $\operatorname{lcm}(a, b)$ is the least common multiple of a and $\left.b . \operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}\right)$
(Note: $o(m)$ in \mathbb{Z}_{n} is given by $\frac{n}{\operatorname{gcd}(m, n)}$)
14. Calculate the order of the element $(7,5)$ in the group $\mathbb{Z}_{12} \times \mathbb{Z}_{8}$
$o(7)$ is the order of 7 as an element of \mathbb{Z}_{12}
$o(7)=\frac{12}{\operatorname{gcd}(7,12)}=\frac{12}{1}=12$
$o(5)$ is the order of 5 as an element of \mathbb{Z}_{8}
$o(5)=\frac{8}{\operatorname{gcd}(5,8)}=\frac{8}{1}=8$
$o(7,5)$ is the order of $(7,5)$ as an element of $\mathbb{Z}_{12} \times \mathbb{Z}_{8}$
$o(7,5)=\operatorname{lcm}(o(7), o(5))=\operatorname{lcm}(12,8)=\frac{12 \cdot 8}{\operatorname{gcd}(12,8)}=\frac{96}{4}=24$

$$
o(7,5)=24
$$

(Note: $\operatorname{lcm}(a, b)$ is the least common multiple of a and $\left.b . \operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}\right)$
(Note: $o(m)$ in \mathbb{Z}_{n} is given by $\frac{n}{\operatorname{gcd}(m, n)}$)
15. Calculate the order of the element $(8,6,4)$ in the group $\mathbb{Z}_{18} \times \mathbb{Z}_{9} \times \mathbb{Z}_{8}$
$o(8)$ is the order of 8 as an element of \mathbb{Z}_{18}
$o(8)=\frac{18}{\operatorname{gcd}(8,18)}=\frac{18}{2}=9$
$o(6)$ is the order of 6 as an element of \mathbb{Z}_{9}
$o(6)=\frac{9}{\operatorname{gcd}(6,9)}=\frac{9}{3}=3$
$o(4)$ is the order of 4 as an element of \mathbb{Z}_{8}
$o(4)=\frac{8}{\operatorname{gcd}(4,8)}=\frac{8}{4}=2$
$o(8,6,4)$ is the order of $(8,6,4)$ as an element of $\mathbb{Z}_{18} \times \mathbb{Z}_{9} \times \mathbb{Z}_{8}$
$o(8,6,4)=\operatorname{lcm}(o(8), o(6), o(4))=\operatorname{lcm}(9,3,2)=\operatorname{lcm}(\operatorname{lcm}(9,3), 2)$
$\operatorname{lcm}(9,3)=\frac{9 \cdot 3}{\operatorname{gcd}(9,3)}=\frac{27}{3}=9$
$\operatorname{lcm}(\operatorname{lcm}(9,3), 2)=\operatorname{lcm}(9,2)=\frac{9 \cdot 2}{\operatorname{gcd}(9,2)}=\frac{18}{1}=18$

$$
o(8,6,4)=18
$$

(Note: $\operatorname{lcm}(a, b)$ is the least common multiple of a and $\left.b . \operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}\right)$
$($ note also: $\operatorname{lcm}(a, b, c)=\operatorname{lcm}(\operatorname{lcm}(a, b), c))$
(Note: $o(m)$ in \mathbb{Z}_{n} is given by $\frac{n}{\operatorname{gcd}(m, n)}$)
16. Calculate the order of the element $(8,6,4)$ in the group $\mathbb{Z}_{9} \times \mathbb{Z}_{17} \times \mathbb{Z}_{10}$
$o(8)$ is the order of 8 as an element of \mathbb{Z}_{9}
$o(8)=\frac{9}{\operatorname{gcd}(8,9)}=\frac{9}{1}=9$
$o(6)$ is the order of 6 as an element of \mathbb{Z}_{17}
$o(6)=\frac{17}{\operatorname{gcd}(6,17)}=\frac{17}{1}=17$
$o(4)$ is the order of 4 as an element of \mathbb{Z}_{10}
$o(4)=\frac{10}{\operatorname{gcd}(4,10)}=\frac{10}{2}=5$
$o(8,6,4)$ is the order of $(8,6,4)$ as an element of $\mathbb{Z}_{9} \times \mathbb{Z}_{17} \times \mathbb{Z}_{10}$
$o(8,6,4)=\operatorname{lcm}(o(8), o(6), o(4))=\operatorname{lcm}(9,17,5)=\operatorname{lcm}(\operatorname{lcm}(9,17), 5)$
$\operatorname{lcm}(9,17)=\frac{9 \cdot 17}{\operatorname{gcd}(9,17)}=\frac{153}{1}=153$
$\operatorname{lcm}(\operatorname{lcm}(9,17), 5)=\operatorname{lcm}(153,5)=\frac{153 \cdot 5}{\operatorname{gcd}(153 \cdot 5)}=\frac{153 \cdot 5}{1}=765$
$o(8,6,4)=765$
(Note: $\operatorname{lcm}(a, b)$ is the least common multiple of a and $\left.b . \operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}\right)$
$($ note also: $\operatorname{lcm}(a, b, c)=\operatorname{lcm}(\operatorname{lcm}(a, b), c))$
(Note: $o(m)$ in \mathbb{Z}_{n} is given by $\frac{n}{\operatorname{gcd}(m, n)}$)
17. Suppose that $(A, *) \leq(G, *)$ and that $(B, *) \leq(H, *)$. Show that $(A \times B, *) \leq(G \times H, *)$.

Note: The operation $*$ in $(G, *)$ is the operator that acts on the first component of $(G \times H, *)$
The operation $*$ in $(H, *)$ is the operator that acts on the second component of $(G \times H, *)$
Also: Given $a_{1}, a_{2} \in A$, the operation $*$ in $(A, *)$ assigns the same element to $a_{1} * a_{2}$ that it assigns to $a_{1} * a_{2}$ as elements of $(G, *)$

Given $b_{1}, b_{2} \in B$, the operation $*$ in $(B, *)$ assigns the same element to $b_{1} * b_{2}$ that it assigns to $b_{1} * b_{2}$ as elements of $(H, *)$

OK, here's the proof:

1. First note that the operation $*$ on $A \times B$ is closed on $A \times B$.

Since A and B are subgroups of A and B respectively, They are closed under their respective operations.
i.e., Given $a_{1}, a_{2} \in A, a_{1} * a_{2} \in A$, and given $b_{1}, b_{2} \in B, b_{1} * b_{2} \in B$.

Thus, given $\left(a_{1}, b_{1}\right) ;\left(a_{2}, b_{2}\right) \in A \times B,\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right)=\left(a_{1} * a_{2}, b_{1} * b_{2}\right) \in A \times B$.
2. Next note that $\left(e_{A}, e_{B}\right)$ is the identity of $(A \times B, *)$. This is shown below.

$$
\begin{aligned}
& (a, b) *\left(e_{A}, e_{B}\right)=\left(a * e_{A}, b * e_{B}\right)=(a, b) \\
& \left(e_{A}, e_{B}\right) *(a, b)=\left(e_{A} * a, e_{B} * b\right)=(a, b)
\end{aligned}
$$

3. Given $(a, b) \in A \times B$, the inverse of (a, b) is $\left(a^{-1}, b^{-1}\right)$, where a^{-1} is the inverse of a in $\left(A, *_{A}\right)$ and b^{-1} is the inverse of b in $\left(B, *_{B}\right)$. This is shown below.

$$
\begin{aligned}
& \left(a^{-1}, b^{-1}\right) *(a, b)=\left(a^{-1} * a, b^{-1} * b\right)=\left(e_{A}, e_{B}\right) \\
& (a, b) *\left(a^{-1}, b^{-1}\right)=\left(a * a^{-1}, b * b^{-1}\right)=\left(e_{A}, e_{B}\right)
\end{aligned}
$$

4. The operation $*$ on $A \times B$ is associative. This follows directly from the fact that this same operation is associative on $G \times H$, of which $A \times B$ is a subset.
