MTH 1126-Test \#4

Spring 2023
Pat Rossi
Name \qquad

Show CLEARLY how you arrive at your answers.

In Exercises 1-2, Determine convergence/divergence. If the integral converges, find its value.

1. $\int_{5}^{\infty} \frac{1}{(x-1)^{\frac{1}{2}}} d x=$
2. $\int_{2}^{6} \frac{1}{(x-2)^{\frac{3}{2}}} d x=$
3. Determine convergence/divergence of the sequence whose $n^{\text {th }}$ term is given by: $a_{n}=(-1)^{n+1} \frac{1}{n}$. (i.e., Determine convergence/divergence of the sequence $\left\{(-1)^{n+1} \frac{1}{n}\right\}_{n=1}^{\infty}=$ $\left\{1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5},-\frac{1}{6} \ldots\right\}$.)
4. Determine convergence/divergence of the given series. (Justify your answer!) If the series converges, determine its sum.

$$
\sum_{n=1}^{\infty} \frac{2}{n^{2}+2 n}=
$$

In Exercises 5-6, determine convergence/divergence of the given series. (Justify your answers!) If the series converges, determine its sum.
5. $1+\frac{4}{5}+\frac{16}{25}+\frac{64}{125}+\ldots+\left(\frac{4}{5}\right)^{n}+\ldots$
6. $\sum_{n=1}^{\infty} \frac{n}{2 n-1}=$

In Exercises 7-9, determine convergence/divergence of the given series. (Justify your answers!)
7. $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{2}{3}}+1}$
8. $\sum_{n=2}^{\infty} \frac{1}{n-1}$
9. Determine convergence/divergence of the given series. (Justify your answer!) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\ldots$

For exercises 10-11, choose one. (You can do the other for extra credit. (10 points))
10. Determine convergence/divergence of the given series. (Justify your answer!)
$\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{2 n+1}}\right)^{n}$
11. Determine convergence/divergence of the given series. (Justify your answer!) $\sum_{n=1}^{\infty} \frac{5^{2 n}}{n!}$

