MTH 1125 (12 pm) Test \#3 - Solutions

Fall 2023
Pat Rossi
Name \qquad

Instructions. Show CLEARLY how you arrive at your answers.

1. $f(x)=2 x^{3}-3 x^{2}+2$ Determine the intervals on which $f(x)$ is increasing/decreasing and identify all relative maximums and minimums. (Caution - there are two critical numbers. Make sure you get them both!)
i. Compute $f^{\prime}(x)$ and find the critical numbers
$f^{\prime}(x)=6 x^{2}-6 x$
a. "Type a" $\left(f^{\prime}(c)=0\right)$

Set $f^{\prime}(x)=0$ and solve for x
$\Rightarrow f^{\prime}(x)=6 x^{2}-6 x=0$
$\Rightarrow 6 x(x-1)=0$
$\Rightarrow 6 x=0 \quad$ or $\quad(x-1)=0$
$\Rightarrow x=0$ and $x=1$ are critical numbers.
b. "Type b" $\left(f^{\prime}(c)\right.$ is undefined $)$

Look for x-value that causes division by zero.
No "type b" critical numbers
2. Draw a "sign graph" of $f^{\prime}(x)$, using the critical numbers to partition the x-axis
3. Pick a "test point" from each interval to plug into $f^{\prime}(x)$

$f(x)$ is increasing on the interval $(\mathrm{s})(-\infty, 0)$ and $(1, \infty)$ (because $f^{\prime}(x)$ is positive on these intervals)
$f(x)$ is decreasing on the interval(s) $(0,1)$
(because $f^{\prime}(x)$ is negative on that interval)
4. To find the relative maxes and mins, sketch a rough graph of $f(x)$.

Rel Max $(0, f(0))=(0,2)$
$\operatorname{Rel} \operatorname{Min}(1, f(1))=(1,1)$
2. $f(x)=x^{4}-8 x^{3}-30 x^{2}+6 x+3$ Determine the intervals on which $f(x)$ is Concave up/Concave down and identify all points of inflection. Determine the intervals on which $f(x)$ is Concave up/Concave down and identify all points of inflection.

1. Compute $f^{\prime \prime}(x)$ and find possible points of inflection.

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-24 x^{2}-60 x+6 \\
& f^{\prime \prime}(x)=12 x^{2}-48 x-60
\end{aligned}
$$

Find possible points of inflection:
a. "Type a" $\left(f^{\prime \prime}(x)=0\right)$

Set $f^{\prime \prime}(x)=0$
$\Rightarrow f^{\prime \prime}(x)=12 x^{2}-48 x-60=0$
$\Rightarrow x^{2}-4 x-5=0$
$\Rightarrow(x+1)(x-5)=0$
$x=-1,5$ possible "type a" points of inflection
b. "Type b" $\left(f^{\prime \prime}(x)\right.$ undefined $)$

No "Type b" points of inflection
2. Draw a "sign graph" of $f^{\prime \prime}(x)$, using the possible points of inflection to partition the x-axis.
3. Select a test point from each interval and plug into $f^{\prime \prime}(x)$

$f(x)$ is concave up on the intervals $(-\infty,-1)$ and $(5, \infty)$ (because $f^{\prime \prime}(x)$ is positive on these intervals)
$f(x)$ is concave down on the interval $(-1,5)$
(because $f^{\prime \prime}(x)$ is negative on this interval)
Since $f(x)$ changes concavity at $x=-1$ and $x=5$, the points: $(-1, f(-1))=(-1,-24)$
and
$(5, f(5))=(5,-1092)$ are points of inflection.
3. $f(x)=x^{3}+6 x^{2}-15 x+3$ on the interval $[-2,2]$. Find the Absolute Maximum and Absolute Minimum values (if they exist).

Note: ${ }^{1} f(x)$ is continuous (since it is a polynomial) on the ${ }^{2}$ closed, ${ }^{3}$ finite interval $[-2,2]$. Therefore, we can use the Absolute Max/Min Value Test.
i. Compute $f^{\prime}(x)$ and find the critical numbers.

$$
f^{\prime}(x)=3 x^{2}+12 x-15
$$

a. "Type a" $\left(f^{\prime}(x)=0\right)$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+12 x-15=0 \\
& \Rightarrow 3\left(x^{2}+4 x-5\right)=0 \\
& \Rightarrow(x+5)(x-1)=0 \\
& \Rightarrow x=-5,1 \text { are "type a" critical numbers }
\end{aligned}
$$

Since $x=-5$ is not in the interval $[-2,2]$, we discard it as a critical number.
b. "Type b" $\left(f^{\prime}(x)\right.$ is undefined $)$

No "Type b" critical numbers
ii. Plug endpoints and critical numbers into $f(x)$ (the original function)

$$
\begin{aligned}
& f(-2)=(-2)^{3}+6(-2)^{2}-15(-2)+3=49 \leftarrow \text { Abs Max Value } \\
& f(1)=(1)^{3}+6(1)^{2}-15(1)+3=-5 \leftarrow \text { Abs Min Value } \\
& f(2)=(2)^{3}+6(2)^{2}-15(2)+3=5
\end{aligned}
$$

The Abs Max Value is 49
(attained at $x=-2$)
The Abs Min Value is -5
(attained at $x=1$)
4. $f(x)=\frac{1}{7} x^{\frac{14}{5}}-2 x^{\frac{4}{5}}+1$ Determine the intervals on which $f(x)$ is increasing/decreasing and identify all relative maximums and minimums.

1. Compute $f^{\prime}(x)$ and find the critical numbers

$$
f^{\prime}(x)=\frac{2}{5} x^{\frac{9}{5}}-\frac{8}{5} x^{-\frac{1}{5}}=\frac{2 x^{\frac{9}{5}}}{5}-\frac{8}{5 x^{\frac{1}{5}}}=\frac{2 x^{\frac{9}{5}}}{5} \frac{x^{\frac{1}{5}}}{x^{\frac{1}{5}}}-\frac{8}{5 x^{\frac{1}{5}}}=\frac{2 x^{2}-8}{5 x^{\frac{1}{5}}}
$$

i.e., $f^{\prime}(x)=\frac{2 x^{2}-8}{5 x^{\frac{1}{5}}}$
a. "Type a" $\left(f^{\prime}(c)=0\right)$

Set $f^{\prime}(x)=0$ and solve for x
$\Rightarrow f^{\prime}(x)=\frac{2 x^{2}-8}{5 x^{\frac{1}{5}}}=0$
$\Rightarrow 2 x^{2}-8=0$
$\Rightarrow x^{2}-4=0$
$\Rightarrow(x+2)(x-2)=0$
$\Rightarrow x=-2$ and $x=2$ are critical numbers.
b. "Type b" $\left(f^{\prime}(c)\right.$ is undefined $)$

Look for x-value that causes division by zero.

$$
\begin{aligned}
& \Rightarrow 5 x^{\frac{1}{5}}=0 \\
& \Rightarrow x=0 \text { "type b" critical number }
\end{aligned}
$$

2. Draw a "sign graph" of $f^{\prime}(x)$, using the critical numbers to partition the x-axis
3. Pick a "test point" from each interval to plug into $f^{\prime}(x)$

$f(x)$ is increasing on the interval(s) $(-2,0)$ and $(2, \infty)$
(because $f^{\prime}(x)$ is positive on these intervals)
$f(x)$ is decreasing on the interval $(\mathrm{s})(-\infty,-2)$ and $(0,2)$
(because $f^{\prime}(x)$ is negative on that interval)
4. To find the relative maxes and mins, sketch a rough graph of $f(x)$.

Rel Minimums: $(-2, f(-2))=\left(-2, \frac{1}{7}(-2)^{\frac{14}{5}}-2(-2)^{\frac{4}{5}}+1\right)$ and $(2, f(2))=\left(2, \frac{1}{7}(2)^{\frac{14}{5}}-2(2)^{\frac{4}{5}}+1\right)$

Rel Maximum: $(0, f(0))=(0,1)$
5. A rancher has 200 yards of fencing to enclose three adjacent rectangular corrals, as shown below. What overall dimensions should be used so that the enclosed area will be as large as possible?

Solution: Version 1 (Express area A as a function of x)
i. Declare what it is that you want to maximize/minimize - give it a name.

Maximize enclosed area, $A=3 x y$
Draw a picture
(Done)
ii. Express A as a function of one variable. (Refer to a restriction stated in the problem.)

Restriction: Use 200 ft of fencing

$$
\begin{aligned}
& \Rightarrow 6 x+4 y=200 \mathrm{yds} \\
& \Rightarrow 4 y=200 \mathrm{yds}-6 x \\
& \Rightarrow y=50 \mathrm{yds}-\frac{3}{2} x
\end{aligned}
$$

Plug this into the equation $A=3 x y$
$\Rightarrow A=3 x\left(50\right.$ yds $\left.-\frac{3}{2} x\right)=150$ yds $x-\frac{9}{2} x^{2}$
i.e., $A(x)=150$ yds $x-\frac{9}{2} x^{2}$
iii. Determine the restrictions on the independent variable x.

0 yds $\leq x \leq \frac{100}{3}$ yds
iv. Maximize/minimize the function, using the techniques of calculus

Since $A(x)$ is continuous on the closed, finite interval [0 yds, $\frac{100}{3} \mathrm{yds}$], we can use the Absolute Max/Min Value Test.

Compute $A^{\prime}(x)$ and find the critical numbers
$A^{\prime}(x)=150$ yds $-9 x$
Type a: set $A^{\prime}(x)=150$ yds $-9 x=0$
$\Rightarrow 9 x=150 \mathrm{yds}$
$\Rightarrow x=\frac{50}{3}$ yds (critical number)
Type b: No Type b critical numbers
Plug endpoints and critical numbers into $A(x)$, the original function.

$$
\begin{aligned}
& A(0 \mathrm{yds})=150 \mathrm{yds}(0 \mathrm{yds})-\frac{9}{2}(0 \mathrm{yds})^{2}=0 \mathrm{yds}^{2} \\
& A\left(\frac{50}{3} \mathrm{yds}\right)=150 \mathrm{yds}\left(\frac{50}{3} \mathrm{yds}\right)-\frac{9}{2}\left(\frac{50}{3} \mathrm{yds}\right)^{2}=1250 \mathrm{yds}^{2} \leftarrow \text { Abs Max Area } \\
& A\left(\frac{100}{3} \mathrm{yds}\right)=150 \mathrm{yds}\left(\frac{100}{3} \mathrm{yds}\right)-\frac{9}{2}\left(\frac{100}{3} \mathrm{yds}\right)^{2}=0 \mathrm{yds}^{2}
\end{aligned}
$$

v. Make sure we've answered the original question:
"What dimensions should be used . . . "
Length $=3 \mathrm{x}=3\left(\frac{50}{3} \mathrm{yds}\right)=50 \mathrm{yds}$
Width $=y=50$ yds $-\frac{3}{2} x=50$ yds $-\frac{3}{2}\left(\frac{50}{3}\right.$ yds $)=25 \mathrm{yds}$

Length $=3 \mathrm{x}=50 \mathrm{yds}$
Width $=y=25 \mathrm{yds}$

Solution: Version 2 (Express area A as a function of y)
(Appears on the next page)

Solution: Version 2 (Express area A as a function of y)
i. Declare what it is that you want to maximize/minimize - give it a name.

Maximize enclosed area, $A=3 x y$
Draw a picture
(Done)
ii. Express A as a function of one variable. (Refer to a restriction stated in the problem.)

Restriction: Use 200 ft of fencing
$\Rightarrow 6 x+4 y=200 \mathrm{yds}$
$\Rightarrow 6 x=200 \mathrm{yds}-4 y$
$\Rightarrow 3 x=100$ yds $-2 y$
Plug this into the equation $A=3 x y$
$\Rightarrow A=(100$ yds $-2 y) y=100$ yds $y-2 y^{2}$
i.e., $A(x)=100$ yds $y-2 y^{2}$
iii. Determine the restrictions on the independent variable y.

0 yds $\leq y \leq 50$ yds
iv. Maximize/minimize the function, using the techniques of calculus

Since $A(y)$ is continuous on the closed, finite interval [0 yds, 50 yds], we can use the Absolute Max/Min Value Test.

Compute $A^{\prime}(y)$ and find the critical numbers
$A^{\prime}(y)=100$ yds $-4 y$
Type a: set $A^{\prime}(y)=100$ yds $-4 y=0$
$\Rightarrow 4 y=100 \mathrm{yds}$
$\Rightarrow y=25$ yds (critical number)
Type b: No Type b critical numbers

Plug endpoints and critical numbers into $A(x)$, the original function.

$$
\begin{aligned}
& A(0 \mathrm{yds})=100 \mathrm{yds}(0 \mathrm{yds})-2(0 \mathrm{yds})^{2}=0 \mathrm{yds}^{2} \\
& A(25 \mathrm{yds})=100 \mathrm{yds}(25 \mathrm{yds})-2(25 \mathrm{yds})^{2}=1250 \mathrm{yds}^{2} \leftarrow \text { Abs Max Area } \\
& A(50 \mathrm{yds})=100 \mathrm{yds}(50 \mathrm{yds})-2(50 \mathrm{yds})^{2}=0 \mathrm{yds}^{2}
\end{aligned}
$$

v. Make sure we've answered the original question:
"What dimensions should be used . . ."
Width $=y=25 \mathrm{yds}$
Length $=3 \mathrm{x}=100 \mathrm{yds}-2 y=50 \mathrm{yds}$

Length $=3 \mathrm{x}=50 \mathrm{yds}$
Width $=y=25$ yds

