
MTH 4441 MTH 4441 Practice Finale Exam Part #3 - Solutions
Fall 2021

Pat Rossi Name

1. Define - permutation

Let X be a non-empty set. A one to one and onto function f : X → X is called a
permutation of X.

2. Define - r-cycle (or cycle).

Suppose that x1, x2, . . . , xr, with 1 ≤ r ≤ n, are distinct elements of {1, 2, 3, . . . , n} . The
r-cycle (x1, x2, . . . , xr) is the permutation of Sn that maps x1 → x2, x2 → x3, . . . , xr−1 →
xr, xr → x1, and leaves all other elements fixed.

3. Prove: Let S = {1, 2, 3, . . . , n} and let Sn be the set of all permutations f : S → S.
Furthermore, let ◦ be the operation of function composition. Then (Sn, ◦) is a group.

pf/

i. The operation ◦ on SX is closed.

Let f, g ∈ SX . Then f ◦ g ∈ SX , since the composition of one to one and onto functions on
a set X is also a one to one and onto function on X.

ii. 1X ,the identity function on X, is the identity.

First, note that 1X ∈ SX , since 1X is one to one and onto.

Let f ∈ SX . Then (1X ◦ f) (x) = 1X (f (x)) = f(x) and (f ◦ 1X) (x) = f (1X (x)) = f (x) .

i.e., 1X ◦ f = f = f ◦ 1X

iii. Given f ∈ SX , f has an inverse.

Since every permutation f ∈ SX is one to one and onto, every permutation f ∈ SX has
an inverse f−1 ∈ SX ,which has the property that f−1 ◦ f = 1X = f ◦ f−1.

iv. ◦ is associative, since the operation of function composition is, in general, associative.

Since (Sn, ◦) satisfies all of the group axioms, it is a group. �

4. Define - disjoint cycles

Two cycles are disjoint exactly when they do not “move”(or “act on”) the same element.

5. Define - transposition

A transposition is a 2-cycle. (i.e., a cycle that “moves”or “acts on”exactly two elements).



6. For Exercises 6-7, State two theorems about permutations.

Thm - Let f ∈ Sn.Then there exist disjoint cycles f1, f2, . . . , fm ∈ Sn, such that f =
f1 ◦ f2 ◦ . . . ◦ fm. (i.e., every permutation on {1, 2, . . . , n} can be written as the “product”
(actually “composition”) of disjoint cycles. The order of these cycles is arbitrary.

7.

Thm - Every cycle can be expressed as the “product”of transpositions. (in the case of the
identity permutation, it can be written as (1, 2) ◦ (1, 2))

Thm - A permutation can be expressed as the “product”an even number of transpositions
or an odd number of transpositions, but not both. This expression is not unique.

8. Perform the indicated operations in S6(
1 2 3 4 5 6
3 1 4 5 6 2

)
◦
(
1 2 3 4 5 6
2 1 3 6 4 5

)
=

Recall: We begin with the permutation on the right.

(
1 2 3 4 5 6
3 1 4 5 6 2

)
◦
(
1 2 3 4 5 6
2 1 3 6 4 5

)
=

(
1 2 3 4 5 6
1 3 4 2 5 6

)
Alternatively: We can combine this in one diagram(
1 2 3 4 5 6
3 1 4 5 6 2

)
◦
(
1 2 3 4 5 6
2 1 3 6 4 5

)
=

 1 2 3 4 5 6
2 1 3 6 4 5
1 3 4 2 5 6

 =

(
1 2 3 4 5 6
1 3 4 2 5 6

)
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9. Express the permutation as a “product”of disjoint cycles and then as the “product”of
transpositions. Classify the permutation as being either even or odd.(
1 2 3 4 5 6 7 8
3 4 2 1 6 5 8 7

)
=

Starting with 1, note that the permutation maps 1 to 3, 3 to 2, 2 to 4, and 4 back to 1. This
yields the cycle (1, 3, 2, 4)

We continue with the leftmost element that was not “moved”by cycle (1, 3, 2, 4) .

The permutation maps 5 to 6 and 6 back to 5. This yields the cycle (5, 6) .

We continue with the leftmost element that has not been “moved”by the cycles (1, 3, 2, 4)
and (5, 6) .

The permutation maps 7 to 8 and 8 back to 7. This yields the cycle (7, 8) .

Thus,
(
1 2 3 4 5 6 7 8
3 4 2 1 6 5 8 7

)
= (1, 3, 2, 4) ◦ (5, 6) ◦ (7, 8)

The order of the cycles is arbitrary, since the cycles are disjoint.

The cycle (1, 3, 2, 4) can be expressed as the product of transpositions according to the
following pattern:

(1, 3, 2, 4) = (1, 4) ◦ (1, 2) ◦ (1, 3)

O(1, 3, 2, 4) (1, 4) O (1, 2) (1, 3)=

i.e., (1, 3, 2, 4) = (1, 4) ◦ (1, 2) ◦ (1, 3) (The order is fixed - it cannot be changed, since the
cycles are not disjoint.

Thus,
(
1 2 3 4 5 6 7 8
3 4 2 1 6 5 8 7

)
= (1, 4) ◦ (1, 2) ◦ (1, 3)︸ ︷︷ ︸

=(1,3,2,4)

◦ (5, 6) ◦ (7, 8)

i.e.,
(
1 2 3 4 5 6 7 8
3 4 2 1 6 5 8 7

)
= (1, 4) ◦ (1, 2) ◦ (1, 3) ◦ (5, 6) ◦ (7, 8)

Since the permutation can be expressed as the “product”of 5 transpositions, it is an odd
permutation.

(Continued)
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10. Given (U5,�) = ({1, 2, 3, 4} ,�) , construct a group of permutations on U5 that is
isomorphic to (U5,�) , and exhibit an isomorphism from (U5,�) to this group.

By Cayley’s Theorem, every group (G, ∗) is isomorphic to a group of permutations on G,
with the operation being ◦ (function composition).

The standard method of finding such a group of permutations on G is as follows:

For each element g ∈ G, define the function fg on G as follows: fg (x) = g ∗ x, ∀x ∈ G

Recall: the group table for (U5,�) = ({1, 2, 3, 4} ,�) :

(U5,�) =

� 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

To construct a group of permutations on U5 that is isomorphic to (U5,�) :
For each element n ∈ U5, define the function fn on U5 as follows: fn (x) = n ∗ x, ∀x ∈ G.

Thus,

f1 (x) = 1 · x, for all x ∈ U5

f1 (1) = 1 · 1 = 1

f1 (2) = 1 · 2 = 2

f1 (3) = 1 · 3 = 3

f1 (4) = 1 · 4 = 4

⇒ f1 =

(
1 2 3 4
1 2 3 4

)
← The row headed by 1 in the group table

f2 (x) = 2 · x, for all x ∈ U5

f2 (1) = 2 · 1 = 2

f2 (2) = 2 · 2 = 4

f2 (3) = 2 · 3 = 1

f2 (4) = 2 · 4 = 3

⇒ f2 =

(
1 2 3 4
2 4 1 3

)
← The row headed by 2 in the group table

(Continued)

4



f3 (x) = 3 · x, for all x ∈ U5

f3 (1) = 3 · 1 = 3

f3 (2) = 3 · 2 = 1

f3 (3) = 3 · 3 = 4

f3 (4) = 3 · 4 = 2

⇒ f3 =

(
1 2 3 4
3 1 4 2

)
← The row headed by 3 in the group table

f4 (x) = 4 · x, for all x ∈ U5

f4 (1) = 4 · 1 = 4

f4 (2) = 4 · 2 = 3

f4 (3) = 4 · 3 = 2

f4 (4) = 4 · 4 = 1

⇒ f4 =

(
1 2 3 4
4 3 2 1

)
← The row headed by 4 in the group table

Computations will confirm the group table for ({f1, f2, f3, f4} , ◦) , shown below:

(U5,�) =

� 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

({f1, f2, f3, f4} , ◦) =

◦ f1 f2 f3 f4

f1 f1 f2 f3 f4
f2 f2 f4 f1 f3
f3 f3 f1 f4 f2
f4 f4 f3 f2 f1

The functions φ : (U5,�) → ({f1, f2, f3, f4} , ◦) given by: φ (i) = fi transforms the group
table for (U5,�) into the group table for ({f1, f2, f3, f4} , ◦)

Clearly, the function φ : (U5,�)→ ({f1, f2, f3, f4} , ◦) given by: φ (i) = fi is the isomorphism
that we seek.

(Continued)
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11. Consider the group (G, ∗) given in the table below:

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Construct a group of permutations on G that is isomorphic to (G, ∗) , and exhibit an iso-
morphism from (G, ∗) to this group.

By Cayley’s Theorem, every group (G, ∗) is isomorphic to a group of permutations on G,
with the operation being ◦ (function composition).

The standard method of finding such a group of permutations on G is as follows:

For each element g ∈ G, define the function fg on G as follows: fg (x) = g ∗ x, ∀x ∈ G

Recall: the group table for (G, ∗) = ({1, 2, 3, 4} ,�) :

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

To construct a group of permutations on G that is isomorphic to (G, ∗) :
For each element g ∈ G, define the function fg on G as follows: fg (x) = g ∗ x, ∀x ∈ G.

Thus,

fe (x) = e · x, for all x ∈ U5

fe (e) = e · e = e

fe (a) = e · a = a

fe (b) = e · b = b

fe (c) = e · c = c

⇒ fe =

(
e a b c
e a b c

)
← The row headed by e in the group table

Therefore, fe is the identity.
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In similar fashion, fa (x) = a ∗ x

Thus:

fa (e) = a ∗ e = a

fa (a) = a ∗ a = e

fa (b) = a ∗ b = c

fa (c) = a ∗ c = b

fa =

(
e a b c
a e c b

)
← The row headed by a in the group table

In similar fashion, fb (x) = b ∗ x,

Thus:

fb (e) = b ∗ e = b

fb (a) = b ∗ a = c

fb (b) = b ∗ b = e

fb (c) = b ∗ c = a

fb =

(
e a b c
b c e a

)
← The row headed by b in the group table

In similar fashion, fc (x) = c ∗ x

Thus:

fc (e) = c ∗ e = c

fc (a) = c ∗ a = b

fc (b) = c ∗ b = a

fc (c) = c ∗ c = e

fc =

(
e a b c
c b a e

)
← The row headed by c in the group table

Some sample computations:

fb ◦ fb =
(
e a b c
b c e a

)
◦
(
e a b c
b c e a

)
=

(
e a b c
e a b c

)
= fe

i.e., fb ◦ fb = fe

fc ◦ fc =
(
e a b c
c b a e

)
◦
(
e a b c
c b a e

)
=

(
e a b c
e a b c

)
= fe

i.e., fc ◦ fc = fe
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The group tables for (G, ∗) and ({fe, fa, fb, fc} , ◦) are given below:

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

◦ fe fa fb fc

fe fe fa fb fc
fa fa fe fc fb
fb fb fc fe fa
fc fc fb fa fe

Key Observation: You may notice that the function φ : (G, ∗)→ ({fe, fa, fb, fc} , ◦) , given
by φ (x) = fx transforms the group table for (G, ∗) into the group table for ({fe, fa, fb, fc} , ◦) .
Thus, the two groups are isomorphic and φ is the isomorphism that we seek.

12. We are given a group (G, ∗) , and an element x ∈ G. Given also that x5 = e and that
x3 = e, prove that x = e.

pf/ The key here is to use the facts that:

i) (xn)−1 = (x−1)n , where x−1 is the inverse of x, and (xn)−1is the inverse of xn.

and

ii) e−1 = e

Observe: e = x3 ⇒ e−1 = (x3)
−1

i.e., (x3)−1 = e

Thus, x2 = e ∗ x2 =
(
(x3)

−1 ∗ x3
)
∗ x2 = (x3)−1 ∗ (x3 ∗ x2) = (x3)−1 ∗ x5 = e ∗ e = e

i.e., x2 = e

Hence, (x2)−1 = e also.

Thus, x = e ∗ x =
(
(x2)

−1 ∗ x2
)
∗ x = (x2)−1 ∗ (x2 ∗ x) = (x2)−1 ∗ x3 = e ∗ e = e

i.e., x = e �
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