## MTH 3311 Test \#1

Spring 2023
Pat Rossi
Name $\qquad$
Show CLEARLY how you arrive at your answers.

1. Classify the following according to order and linearity. If an equation is not linear, explain why.
(a) $\frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+\sin (x) y=\tan (x)$
(b) $y^{(6)}+6 y^{\prime \prime \prime}-2 y y^{\prime}+6 y=e^{x}$
(c) $8 x^{4} y^{\prime \prime}+\cos (x) y^{\prime}+3 y=\sec (6 x)$
(d) $3 x^{4} \frac{d^{2} y}{d x^{2}}+3 y^{4} \frac{d y}{d x}+6 y=\frac{1}{x^{2}+1}$
2. Solve: $\frac{d y}{d x}=\frac{x \sqrt{x^{2}+5}}{y^{2}}$; subject to the initial condition $y(2)=3$
3. Solve: $y^{\prime}+x^{-2} y=6 x^{-2}$, using the "Integrating Factor" Method. (Assume $y>0$ )
4. Show that the function $y=e^{2 x}+2 x^{2}+6 x$ is a solution of the differential equation: $y^{\prime \prime}-y^{\prime}-2 y=-4 x^{2}-16 x-2$
5. Determine whether or not the equation is exact. If the equation is exact, solve it.

$$
\left(3 x^{2}+\ln (y)+3 x^{2} y^{3}\right) d x+\left(\frac{x}{y}+3 x^{3} y^{2}+\cos (y)\right) d y=0
$$

6. Solve: $\frac{d y}{d x}=\frac{x y+y^{2}+x^{2}}{x^{2}}$ using the substitution $v=\frac{y}{x}$.
