MTH 1125 Test #3

Summer 2023

Name $_{-}$

Instructions. Show CLEARLY how you arrive at your answers.

- 1. $f(x) = 2x^3 + 3x^2 36x + 8$ Determine the intervals on which f(x) is increasing/decreasing and identify all relative maximums and minimums.
 - i. Compute f'(x) and find critical numbers

$$f'(x) = 6x^2 + 6x - 36$$

Pat Rossi

a. "Type a"
$$(f'(c) = 0)$$

Set
$$f'(x) = 6x^2 + 6x - 36 = 0$$

$$\Rightarrow$$
 $6x^2 + 6x - 36 = 0$

$$\Rightarrow x^2 + x - 6 = 0$$

$$\Rightarrow$$
 $(x+3)(x-2)=0$

$$\Rightarrow x = -3; x = 2 \text{ critical numbers}$$

b. "Type b" (f'(c) undefined)

There are none.

- ii. Draw a sign graph of f'(x), using the critical numbers to partition the x-axis
- iii. From each interval select a "test point" to plug into f'(x)

f(x) is **increasing** on the intervals $(-\infty, -3)$ and $(2, \infty)$

(Because f'(x) is positive on these intervals)

f(x) is **decreasing** on the interval (-3,2)

(Because f'(x) is negative on this interval)

iv. To find the relative maxes and mins, sketch a rough graph of $f\left(x\right)$.

 $f\left(x\right)$ is $\mathbf{increasing}$ on the intervals $\left(-\infty,-3\right)$ and $\left(2,\infty\right)$

f(x) is **decreasing** on the interval (-3,2)

(-3, f(-3)) = (-3, 89) Relative Max

 $\left(2,f\left(3\right) \right) =\left(2,-36\right) \quad \text{ Relative Min}$

- 2. $f(x) = x^4 4x^3 48x^2 + 6x 6$ Determine the intervals on which f(x) is Concave up/Concave down and identify all points of inflection.
 - i. Compute f''(x) and find possible points of inflection

$$f'(x) = 4x^3 - 12x^2 - 96x + 6$$

$$f''(x) = 12x^2 - 24x - 96$$

a. "Type a"
$$(f''(c) = 0)$$

Set
$$f''(x) = 12x^2 - 24x - 96 = 0$$

$$\Rightarrow 12x^2 - 24x - 96 = 0$$

$$\Rightarrow x^2 - 2x - 8 = 0$$

$$\Rightarrow$$
 $(x+2)(x-4)=0$

 $\Rightarrow x = -2$; and x = 4 possible points of inflection

b. "Type b" (f''(c)) undefined)

There are none.

- ii. Draw a sign graph of f''(x), using the possible points of inflection to partition the x-axis
- iii. From each interval select a "test point" to plug into f''(x)

f(x) is **concave up** on the intervals $(-\infty, -2)$ and $(4, \infty)$

(Because f''(x) > 0 on these intervals)

f(x) is **concave down** on the interval (-2,4)

(Because f''(x) < 0 on this interval)

Since f(x) changes concavity at x = -2 and x = 4, the points:

$$(-2, f(-2)) = (-2, -162)$$

and

(4, f(4)) = (4, -750) are points of inflection.

3. $f(x) = x^3 + 6x^2 - 6$ on the interval [-3, 2]. Find the Absolute Maximum and Absolute Minimum values (if they exist).

Since f(x) is ¹continuous (it's a polynomial) on the ²closed, ³finite interval [-3,2], we can use the Absolute Max/Min Value Test

i. Compute f'(x) and find the critical numbers

$$f'(x) = 3x^2 + 12x$$

a. "Type a"
$$(f'(c) = 0)$$

Set
$$f'(x) = 3x^2 + 12x = 0$$

$$\Rightarrow 3x^2 + 12x = 0$$

$$\Rightarrow 3x(x+4) = 0$$

$$\Rightarrow x = 0; x = -4$$
 "type a" crit. numbers

Since $-4 \notin [-3, 2]$, we discard x = -4 as a critical number.

b. "Type b" (f'(c) undefined)

There are none.

ii. Plug critical numbers and endpoints into the original function.

$$f(-3) = (-3)^3 + 6(-3)^2 - 6 = 21$$

$$f(0) = (0)^3 + 6(0)^2 - 6 = -6 \leftarrow \text{Abs Min Value}$$

$$f(2) = (2)^3 + 6(2)^2 - 6 = 26 \leftarrow \text{Abs Max Value}$$

Abs Max Value = 26

(attained at
$$x = 2$$
)

Abs Min Value = -6

(attained at x = 0)

- 4. $f(x) = x^{\frac{8}{3}} 16x^{\frac{2}{3}} 2$ Determine the intervals on which f(x) is increasing/decreasing and identify all relative maximums and minimums.
 - i. Compute f'(x) and find critical numbers $\frac{8}{3}x^{\frac{5}{3}} \frac{32}{3}x^{-\frac{1}{3}}$

$$f'(x) = \frac{8}{3}x^{\frac{5}{3}} - \frac{32}{3}x^{-\frac{1}{3}} = \frac{8x^{\frac{5}{3}}}{3} - \frac{32}{3x^{\frac{1}{3}}} = \frac{8x^{\frac{5}{3}}}{3}\frac{x^{\frac{1}{2}}}{x^{\frac{1}{3}}} - \frac{32}{3x^{\frac{1}{3}}} = \frac{8x^2}{3x^{\frac{1}{3}}} - \frac{32}{3x^{\frac{1}{3}}} = \frac{8x^2 - 32}{3x^{\frac{1}{3}}}$$

i.e.,
$$f'(x) = \frac{8x^2 - 32}{3x^{\frac{1}{3}}}$$

a. "Type a" (f'(c) = 0)

Set
$$f'(x) = \frac{8x^2 - 32}{3x^{\frac{1}{3}}} = 0$$

$$\Rightarrow 8x^2 - 32 = 0$$

$$\Rightarrow x^2 - 4 = 0$$

$$\Rightarrow$$
 $(x+2)(x-2)=0$

$$\Rightarrow x = -2; x = 2$$
 ("type a" critical numbers)

b. "Type b" (f'(c)) undefined)

f'(x) is undefined when $3x^{\frac{1}{3}} = 0$

 $\Rightarrow x = 0$ ("type a" critical numbers)

- ii. Draw a sign graph of f'(x), using the critical numbers to partition the x-axis
- iii. From each interval select a "test point" to plug into f'(x)

f(x) is **increasing** on the intervals (-2,0) and $(2,\infty)$

(Because f'(x) is positive on these intervals)

f(x) is **decreasing** on the intervals $(-\infty, -2)$ and (0, 2)

(Because f'(x) is negative on these intervals)

iv. To find the relative maxes and mins, sketch a rough graph of $f\left(x\right)$.

- $f\left(x\right)$ is $\mathbf{increasing}$ on the intervals $\left(-2,0\right)$ and $\left(2,\infty\right)$
- $f\left(x\right)$ is **decreasing** on the intervals $\left(-\infty,-2\right)$ and $\left(0,2\right)$

Relative Min: (-2, f(-2)) and (2, f(2))

Relative Max: (0, f(0)) = (0, -2)

5. A rectangle is to be constructed such that one side lies on the positive y-axis, an adjacent side lies on the positive x-axis, and the vertex in between is the origin. If the opposite vertex lies on the graph of $f(x) = (9-x)^2$, what should the value of x be such that the area of the rectangle is as large as possible?

- i. Determine the quantity to be maximized/minimized give it a name, Maximize the overall area of the pen, A=xy
- ii. Express A as a function of one variable.

(Refer to a restriction stated in the problem to do this)

Restriction: y is the value of f(x) at the point $(x, f(x)) = (x, (9-x)^2)$

Thus,
$$A = xy = x (9 - x)^2$$

i.e.,
$$A(x) = x(9-x)^2 = x^3 - 18x^2 + 81x$$

i.e.,
$$A(x) = x^3 - 18x^2 + 81x$$

iii. Determine the restrictions on y

$$0 \le x \le 9$$

iv. Maximize/minimize, using the techniques of calculus.

Observe: A(x) is ¹continuous (it's a polynomial) on the ²closed, ³finite interval [0,9].

Therefore, we can use the Absolute Max/Min Value Test

1. Compute A'(x) and find the critical numbers

$$A'(x) = 3x^2 - 36x + 81 = 3(x^2 - 12x + 27) = 3(x - 3)(x - 9)$$

$$A'(x) = 3(x-3)(x-9)$$

a. "Type a"
$$(A'(c) = 0)$$

$$A'(x) = 3(x-3)(x-9) = 0$$

$$\Rightarrow x = 3, x = 9$$
 critical numbers

b. "Type b"
$$(A'(c) \text{ is undefined})$$

There are none.

2. Plug the critical numbers and endpoints into the original function.

$$A(0) = (0)(9 - (0))^2 = 0 \leftarrow \text{Abs Min Value}$$

$$A(3) = (3)(9 - (3))^2 = 108 \leftarrow \text{Abs Max Value}$$

$$A(9) = (9)(9 - (9))^2 = 0 \leftarrow \text{Abs Min Value}$$

5. Make sure that we've solved the original question (problem).

"What should the value of x be such that the area of the rectangle is as large as possible?"

We have the Abs Max Area when x=3

$$x = 3$$