Proofs Involving Sets \#5 (Proving the Contrapositive) - Solutions Fall 2009

Pat Rossi
Name \qquad

Instructions. Prove the following by proving the contrapositive.

1. $\underbrace{A \subseteq B}_{p} \Rightarrow \underbrace{(A \cap B)=A}_{q}$

Proof. We will prove the contrapositive, $\underbrace{(A \cap B) \neq A}_{\sim q} \Rightarrow \underbrace{A \nsubseteq B}_{\sim p}$.
Let the hypothesis be given. (i.e., Suppose that $(A \cap B) \neq A)$.
\Rightarrow either $(A \cap B) \nsubseteq A$ or $A \nsubseteq(A \cap B)$. (Otherwise, if each set were a subset of the other, the sets would be equal, contrary to our hypothesis.)

Since $(A \cap B) \subseteq A$ (always!) this leaves, as the only possibility, $A \nsubseteq(A \cap B)$.
$\Rightarrow \exists x \in A$ such that $x \notin(A \cap B)$
$\Rightarrow x \in A$ and either $x \notin A$ or $x \notin B$.
i.e., $\underbrace{x \in A \text { and } x \notin A}_{\text {impossible }}$, or $x \in A$ and $x \notin B$
$\Rightarrow x \in A$ and $x \notin B$.
i.e., A has an element that B doesn't.

Hence, $A \nsubseteq B$.
We have shown that $(A \cap B) \neq A \Rightarrow A \nsubseteq B$.
2. $\underbrace{A \subseteq B}_{p} \Rightarrow \underbrace{(A \cup B)=B}_{q}$

Proof. We will prove the contrapositive, $\underbrace{(A \cup B) \neq B}_{\sim q} \Rightarrow \underbrace{A \nsubseteq B}_{\sim p}$.
Let the hypothesis be given. (i.e., Suppose that $(A \cup B) \neq B$.
\Rightarrow either $(A \cup B) \nsubseteq B$ or $B \nsubseteq(A \cup B)$. (Otherwise, if each set were a subset of the other, the sets would be equal, contrary to our hypothesis.)

Since $B \subseteq(A \cup B)$ (always!) this leaves, as the only possibility, $(A \cup B) \nsubseteq B$.
$\Rightarrow \exists x \in(A \cup B)$ such that $x \notin B$
$\Rightarrow \exists x \ni(x \in A$ or $x \in B)$ and $x \notin B$.
i.e., $x \in A$ and $x \notin B$, or $\underbrace{x \in B \text { and } x \notin B}_{\text {impossible }}$
$\Rightarrow x \in A$ and $x \notin B$.
i.e., A has an element that B doesn't.

Hence, $A \nsubseteq B$.
We have shown that $(A \cup B) \neq B \Rightarrow A \nsubseteq B$.
3. $\underbrace{(A \cap B)=\emptyset}_{p} \Rightarrow \underbrace{A \subseteq B^{c}}_{q}$

Proof. We will prove this by proving the contrapositive, $\underbrace{A \nsubseteq B^{c}}_{\sim q} \Rightarrow \underbrace{(A \cap B) \neq \emptyset}_{\sim p}$.
Let the hypothesis be given. (i.e., suppose that $A \nsubseteq B^{c}$).
$\Rightarrow \exists x \in A$ such that $x \notin B^{c}$
$\Rightarrow x \in A$ and $x \in B$
$\Rightarrow x \in A \cap B$
$\Rightarrow(A \cap B) \neq \emptyset$
We have shown that $A \nsubseteq B^{c} \Rightarrow(A \cap B) \neq \emptyset$.

