MTH 3318- Test \#3

Fall 2022
Pat Rossi
Name \qquad

Instructions. Show your work completely. Document your work well.
Remark 1 For problems 1-3, prove two.

1. Prove or disprove: $f: \Re \longrightarrow \Re$ given by $f(x)=3 x^{2}-2$, is one to one.
2. Prove or disprove: $f: \Re \longrightarrow \Re$ given by $f(x)=5 x+1$, is one to one.
3. Prove or disprove: $f: \Re \longrightarrow \Re$ given by $f(x)=x^{3}+3$, is one to one.

Remark 2 For problems 4-6, prove two.
4. Prove or disprove: $f: \Re \longrightarrow \Re$ given by $f(x)=3 x^{2}-2$, is onto.
5. Prove or disprove: $f: \Re \longrightarrow \Re$ given by $f(x)=5 x+1$, is onto.
6. Prove or disprove: $f: \Re \longrightarrow \Re$ given by $f(x)=x^{3}+3$, is onto.

Remark 3 For problems 7-8.
7. Prove: The set of odd natural numbers, $\mathbf{O}=\{1,3,5,7, \ldots, 2 n-1, \ldots\}$, is countably infinite (i.e., denumerable).
8. Prove: The set of Integers, $\mathbb{Z}=\{0,1,-1,2,-2,3,-3, \ldots\}$, is countably infinite (i.e., denumerable).

Remark 4 For problems 9-10, prove either one.
9. The set of positive rational numbers \mathbb{Q}^{+}is countably infinite (i.e., denumerable).
10. The set of real numbers in the interval $[0,1]$ is uncountable (i.e., non-denumerable).

Remark 5 Select TWO problems from problems 11-15.
11. Prove or disprove: $x \in \mathbf{Q}$ and $y \in \mathbf{Q} \Rightarrow x+y \in \mathbf{Q}$
12. Prove or disprove: $x \in \mathbf{Q}$ and $y \in \mathbf{Q}^{c} \Rightarrow x+y \in \mathbf{Q}^{c}$
13. Prove or disprove: $x \in \mathbf{Q}$ and $y \in \mathbf{Q} \Rightarrow x y \in \mathbf{Q}$
14. Prove or disprove: $x \in \mathbf{Q}$ and $y \in \mathbf{Q}^{c} \Rightarrow x+y \in \mathbf{Q}^{c}$
15. Prove or disprove: $x \in \mathbf{Q}^{c}$ and $y \in \mathbf{Q}^{c} \Rightarrow x y \in \mathbf{Q}^{c}$

