MTH 4441 Exercises To study for Test \#1 - Solutions

Fall 2023
Pat Rossi
Name \qquad

1. In each case below, determine whether $*$ is a closed binary operation on the given set. If it $I S$ a closed binary operation, then determine whether it is commutative and/or associative.
(a) $(\mathbb{Z}, *)$ where $a * b=a+b^{2}$

IS a closed binary operation on \mathbb{Z}
NOT commutative. Given $a \neq b, a * b=a+b^{2} \neq b+a^{2}=b * a$
NOT associative.
$(a * b) * c=\left(a+b^{2}\right) * c=\left(a+b^{2}\right)+c^{2}=a+b^{2}+c^{2}$
$a *(b * c)=a *\left(b+c^{2}\right)=a+\left(b+c^{2}\right)^{2}=a+b^{2}+2 b c^{2}+c^{4}$
$(a * b) * c \neq a *(b * c)$
(b) $(\mathbb{Z}, *)$ where $a * b=a^{2} b^{3}$

IS a closed binary operation on \mathbb{Z}
NOT commutative. Given $a \neq b, a * b=a^{2} b^{3} \neq b^{2} a^{3}=b * a$
NOT associative.
$(a * b) * c=a^{2} b^{3} * c=\left(a^{2} b^{3}\right)^{2} c^{3}=a^{4} b^{6} c^{3}$
$a *(b * c)=a * b^{2} c^{3}=a^{2}\left(b^{2} c^{3}\right)^{3}=a^{2} b^{6} c^{9}$
$(a * b) * c \neq a *(b * c)$
(c) $(\mathbb{R}, *)$ where $a * b=\frac{a}{a^{2}+b^{2}}$

NOT a closed binary operation on \mathbb{R} (e.g., $0 * 0$ is undefined, and hence, $0 * 0$ is not assigned any element. So $*$ is not even a binary operation!)
(d) $(\mathbb{Z}, *)$ where $a * b=\frac{a^{2}+2 a b+b^{2}}{a+b}$

NOT a closed binary operation on \mathbb{Z} (e.g., $0 * 0$ is undefined, and hence, $0 * 0$ is not assigned any element. So $*$ is not even a binary operation!)
(e) $(\mathbb{Z}, *)$ where $a * b=a+b-a b$

IS a closed binary operation on \mathbb{Z}
IS Commutative: $a * b=a+b-a b=b+a-b a=b * a$
i.e., $a * b=b * a$

IS Associative:

$$
\begin{aligned}
(a * b) * c & =(a+b-a b) * c=(a+b-a b)+c-(a+b-a b) c \\
& =(a+b-a b)+c-a c-b c+a b c=a+b+c-a b-a c-b c+a b c \\
a *(b * c) & =a *(b+c-b c)=a+(b+c-b c)-a(b+c-b c) \\
& =a+b+c-b c-a b-a c+a b c=a+b+c-a b-a c-b c+a b c
\end{aligned}
$$

i.e., $(a * b) * c=a *(b * c)$
(f) $(\mathbb{R}, *)$ where $a * b=b$

IS a closed binary operation on \mathbb{R}
Is NOT Commutative: Given $a \neq b, a * b=b \neq a=b * a$
i.e., $a * b \neq b * a$

IS Associative:
$(a * b) * c=b * c=c$
$a *(b * c)=a * c=c$
i.e., $(a * b) * c=a *(b * c)$
(g) $(S, *)$ where $S=\{-4,-2,1,2,3\}$ and $a * b=|b|$

Is NOT a closed binary operation on S. (e.g., $1 *(-4)=|4|=4 \notin S$, and hence, $1 *(-4)$ is not closed on the set S)
(h) $(S, *)$ where $S=\{1,2,3,6,18\}$ and $a * b=a b$

NOT a closed binary operation on $S .(6 * 6=36 \notin S$. Hence. the operation is not closed on the set S.)
(i) $(S, *)$ where $S=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}$ and $*$ is matrix addition

IS a closed binary operation on S
IS Commutative: Given $A=\left[\begin{array}{cc}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right] ; B=\left[\begin{array}{cc}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right]$, we have:
$A+B=\left[\begin{array}{ll}a_{1}+b_{1} & a_{2}+b_{2} \\ a_{3}+b_{3} & a_{4}+b_{4}\end{array}\right]=\left[\begin{array}{ll}b_{1}+a_{1} & b_{2}+a_{2} \\ b_{3}+a_{3} & b_{4}+a_{4}\end{array}\right]=B+A$
i.e., $A+B=B+A$

IS Associative: Given $A=\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right] ; B=\left[\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right] ; C=\left[\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & c_{4}\end{array}\right]$, we have:
$(A+B)+C=\left[\begin{array}{ll}a_{1}+b_{1} & a_{2}+b_{2} \\ a_{3}+b_{3} & a_{4}+b_{4}\end{array}\right]+\left[\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & c_{4}\end{array}\right]=\left[\begin{array}{ll}\left(a_{1}+b_{1}\right)+c_{1} & \left(a_{2}+b_{2}\right)+c_{2} \\ \left(a_{3}+b_{3}\right)+c_{3} & \left(a_{4}+b_{4}\right)+c_{4}\end{array}\right]$ $=\left[\begin{array}{ll}a_{1}+\left(b_{1}+c_{1}\right) & a_{2}+\left(b_{2}+c_{2}\right) \\ a_{3}+\left(b_{3}+c_{3}\right) & a_{4}+\left(b_{4}+c_{4}\right)\end{array}\right]=\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]+\left[\begin{array}{ll}b_{1}+c_{1} & b_{2}+c_{2} \\ b_{3}+c_{3} & b_{4}+c_{4}\end{array}\right]$
$=A+(B+C)$
i.e., $(A+B)+C=A+(B+C)$
2. Let $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$, and let $\left(\mathbb{Z}_{6}, \oplus\right)$ be a group, where \oplus is addition modulo 6 . Construct the group table.

\oplus	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

3. In the group $\left(\mathbb{Z}_{6}, \oplus\right)$, what is the order of the element 2 ? What is the order of the element 3?
(i.e., $o(2)=$? $\quad o(3)=$?)
$1 \cdot 2=2 ; 2 \cdot 2=4 ; 3 \cdot 2=0 ; \quad o(2)=3$
$1 \cdot 3=3 ; 2 \cdot 3=0 ; \quad o(3)=2$
4. Construct the group table for $\left(\mathbb{Z}_{7}, \oplus\right)$.

\oplus	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

5. Let $U_{5}=\{1,2,3,4\}$, and let $\left(U_{5}, \odot\right)$ be a group, where \odot is multiplication modulo 5 . Construct the group table.

In $\left(U_{5}, \odot\right)$, the operation \odot is multiplication modulo 5

\odot	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

6. Construct the group table for $\left(U_{3}, \odot\right)$.

In $\left(U_{3}, \odot\right)$, the operation \odot is multiplication modulo 3

\odot	1	2
1	1	2
2	2	1

7. Construct the group table for $\left(U_{7}, \odot\right)$.

In $\left(U_{7}, \odot\right)$, the operation \odot is multiplication modulo 7

\odot	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

8. Construct the group table for $\left(U_{6}, \odot\right)$.

\odot	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

(a) $\left(U_{6}, \odot\right)$ is NOT a group. Give at least two reasons why it is not a group

1. U_{6} is not closed under \odot. For example: $2 \odot 3=0$
2. None of the elements of U_{6} appear at least once in every row and in every column. For example, 1 does not appear in the row headed by 2
3. The elements 2, 3, 4 appear more than once in some rows and columns. For example, 3 appears three times in the row and the column headed by 3 .
4. The elements $2,3,4$ do not have an inverse. This can be seen by the fact that the identity 1 does not appear in the rows and the columns that are headed by 2,3 , and 4 .
5. Construct the group table for $\left(U_{4}, \odot\right)$.

In $\left(U_{4}, \odot\right)$, the operation \odot is multiplication modulo 4

\odot	1	2	3
1	1	2	3
2	2	0	2
3	3	2	1

(a) $\left(U_{4}, \odot\right)$ is NOT a group. Give at least two reasons why it is not a group

1. U_{4} is not closed under \odot. For example: $2 \odot 2=0$
2. The elements 1 and 3 of U_{4} do NOT appear at least once in every row and in every column. The elements 1 and 3 do not appear in the row or the column headed by 2 .
3. The elements 2 appears more than once in the row and column headed by 2 .
4. The elements 2 does not have an inverse. This can be seen by the fact that the identity 1 does not appear in the row and the column that are headed by 2.
5. Determine whether the table below defines a group for $G=\{a, b, c\}$. (State why or why not.)

$*$	a	b	c
a	a	b	c
b	b	a	c
c	c	b	a

Since the elements b and c each appear more than once in a column, the table does NOT define a group

Clearly, a is the identity. Therefore, there should not exist another element x such that $x * c=c$. And yet, $b * c=c$

Similarly, the element c is such that $c * b=b$
11. Determine whether the table below defines a group for $G=\{a, b, c\}$. (State why or why not.)

$*$	a	b	c
a	a	b	c
b	b	b	c
c	c	c	c

This table does NOT define $(G, *)$ as a group.

1. The elements b and c appear more than once in the rows and columns headed by b and c.
2. The identity a does not appear in any row or column headed by b or c, which indicates that neither b nor c has an inverse.
3. Determine whether the table below defines a group for $G=\{a, b, c, d, e, f\}$. State why or why not. (You may assume that the operation $*$ is associative.)

$*$	a	b	c	d	e	f
a	a	b	c	d	e	f
b	b	d	f	a	c	e
c	c	f	b	e	a	d
d	d	a	e	b	f	c
e	e	c	a	f	d	b
f	f	e	d	c	b	a

This table does define a group.
The element a is clearly the identity, as $a * x=x$, and $x * a=x . \forall x \in G$
No elements outside of the set G appear in the table. This means that $x * y \in G$, $\forall x, y \in G$. Hence, the set G is closed under $*$.

Finally, the identity appears in each row and column, indicating that each element of G has an inverse. Furthermore, each right inverse is also the left inverse. (i.e., if $x * y=a$, then $y * x=a$)
13. In the previous exercise, what is the inverse of d ? How do you know?

The inverse of d is b. The element a is the identity, and $b * d=a$ and $d * b=a$
14. Compute the remainder of $25 \operatorname{modulo} 7 \quad$ (i.e. $25 \equiv \ldots(\bmod 7))$
$25=(3)(7)+4, \quad$ Hence $25 \equiv \underline{4}(\bmod 7)$
15. Compute the remainder of 48 modulo 5 (i.e. $\left.48 \equiv _(\bmod 5)\right)$
$48=(9)(5)+3, \quad$ Hence $48 \equiv \underline{3}(\bmod 5)$
16. Compute the remainder of 53 modulo 14 (i.e. $\left.53 \equiv _(\bmod 14)\right)$
$53=(3)(14)+11, \quad$ Hence $53 \equiv \underline{11}(\bmod 14)$
17. Determine whether 58 and 75 are congruent modulo 9 (Determine whether $58 \equiv$ $75(\bmod 9))$

Method \#1 $(58-75)=-17 \neq n(9), \forall n \in \mathbb{Z}$. Hence $58 \neq 75(\bmod 9)$
Method \#2 $58=(6)(9)+4$, and $75=(8)(9)+3$
Since 58 and 75 do not have the same remainder when divided by $9,58 \neq 75(\bmod 9)$
18. Determine whether 43 and 59 are congruent modulo 16 (Determine whether $43 \equiv$ $59(\bmod 9))$

Method \#1 $(43-59)=-16=(1)(16), 43 \equiv 59(\bmod 16)$
Method \#2 $43=(2)(16)+11$, and $59=(3)(16)+11$
Since 43 and 59 have the same remainder when divided by $16,43 \equiv 59(\bmod 16)$
19. Compute gcd $(4,18)$

We will factor both into prime factors
$4=2^{2}$ and $18=2 \cdot 3^{2}$
Therefore, 2 is the greatest common divisor, or factor $(\operatorname{gcd}(4,18)=2)$
20. Compute gcd $(25,40)$

We will factor both into prime factors
$25=5^{2}$ and $40=2^{3} \cdot 5$
Therefore, 5 is the greatest common divisor, or factor $(\operatorname{gcd}(25,40)=5)$
21. Compute gcd $(4,25)$

We will factor both into prime factors
$4=2^{2}$ and $25=5^{2}$
4 and 25 have no prime factors in common. Hence, $\operatorname{gcd}(4,25)=1$

