
Number Theory - Test #2 - Solutions
Summer 2023

Pat Rossi Name

Instructions

Show CLEARLY how you arrive at you answers.

You can look in your text for reference (Statements of theorems, definitions, etc.)

Do not search the internet, or consult with others, for solutions (other than, perhaps, my
own website)

1. State Theorem 2.9

The linear Diophantine equation ax + by = c has a solution if and only if d|c, where
d = gcd (a, b) . If (x0, y0) is any particular solution of this equation, then all other
solutions are of the form:

(x, y) = (x0, y0) +

(
b

d
t,−a

d
t

)
t ∈ Z

i.e., x = x0 +
b

d
t and y = y0 −

a

d
t t ∈ Z

2. Define the prime and composite

An integer p > 1 is a prime number (or prime) exactly when its only positive
divisors are 1 and p. Otherwise, it is composite.

3. State Theorem 3.1

If p is prime and p|ab, then either p|a or p|b.

4. State Corollary 1 (p. 40)

If p is prime and p|a1a2 . . . an, then p|ak for some k, where 1 ≤ k ≤ n.

5. State Theorem 3.2 (the Fundamental Theorem of Arithmetic)

Every positive integer n > 1 is either prime or the product of primes; this representation
is unique, apart from the order in which the primes appear.



6. State the Corollary on page 42

Any positive integer n > 1 can be written uniquely in a canonical form

n = pk11 p
k2
2 · · · pkrr

for primes p1 < p2 < . . . < pr, and positive integers k1, k2, . . . , kr.

7. Prove:
√
2 is irrational.

Proof. Suppose, for the sake of deriving a contradiction, that
√
2 is rational.Then

there exist natural numbers m and n such that
√
2 = m

n
.

Without loss of generality, we can assume that m and n are relatively prime. (If m and
n are not relatively prime, then we can cancel common factors in the numerator and
denominator of m

n
, yielding a fraction whose numerator and denominator are relatively

prime.)
√
2 = m

n

⇒ 2 = m2

n2

⇒ 2n2 = m2

⇒ 2|m2

⇒ 2|m

⇒ ∃ k ∈ N such that m = 2k.

Thus, 2n2 = m2 = (2k)2 = 4k2

i.e., 2n2 = 4k2

⇒ n2 = 2k2

⇒ 2|n2

⇒ 2|n

i.e., 2|m and 2|n.

This contradicts the assumption that m and n are relatively prime.

Since the assumption that
√
2 is rational leads us to this contradiction,

√
2 must be

irrational.
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8. Prove: There are infinitely many primes

Proof. (By contradiction) Suppose, for the sake of deriving a contradiction, that
there are only finitely many primes, p1 < p2 < . . . < pn. Consider the number P =
p1p2 . . . pn + 1.

Observe that P > pi for any i where 1 ≤ i ≤ n.

Since P is larger than the largest prime, P must be composite.

Therefore, P has a prime divisor, let’s call it pk.

(i.e., pk|P )

Also, pk| (p1p2 . . . pn) , since pk appears explicitly as a factor.

Thus, pk| (P − p1p2 . . . pn)⇒ pk| (1)⇒ pk = ±1.

This contradicts the fact that pk is prime.

Since the assumption that there are only finitely many primes leads to a contradiction,
the assumption must be false.

Hence, there must be infinitely many primes.

9. Prove: For any n ∈ N, there exists a sequence of n consecutive composite numbers

Proof. Let n ∈ N be given.

Consider the sequence of n consecutive natural numbers:

(n+ 1)! + 2, (n+ 1)! + 3, (n+ 1)! + 4, . . . , (n+ 1)! + (n+ 1)

Every term in the sequence is a composite number. Here’s why:

(n+ 1)! = (n+ 1) · n · (n− 1) · (n− 2) · . . . · 4 · 3 · 2 · 1

Thus, k| (n+ 1)!, for every k such that 1 ≤ k ≤ n+ 1

Note also that: k| (n+ 1)! and k|k

Thus k divides every linear combination of (n+ 1)! and k, including (n+ 1)! + k, for
every k such that 1 ≤ k ≤ n+ 1.

Thus, (n+ 1)! + k is composite for every k such that 1 ≤ k ≤ n+ 1.
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10. Prove: {3, 5, 7} is the only sequence of three consecutive odd prime numbers.

Proof. Let n, n+ 2, n+ 4 be a sequence of three consecutive odd numbers.

By the Division Algorithm, n must have exactly one of the following forms:

n = 3k, for some k ∈ N

n = 3k + 1, for some k ∈ N

n = 3k + 2, for some k ∈ N

Case 1: n = 3k, for some k ∈ N

In this case n = 3k is only prime when k = 1.

Thus, 3, 5, 7 is the only sequence of odd prime numbers in which the first number has
the form n = 3k

Case 2: n = 3k + 1, for some k ∈ N

In this case n+ 2 = (3k + 1) + 2 = (3k + 3) = 3 (k + 1) is not prime for any k ∈ N.

Thus, there are no sequences of odd prime numbers in which the first number has the
form n = 3k + 1

Case 3: n = 3k + 2, for some k ∈ N

In this case n+ 4 = (3k + 2) + 4 = (3k + 6) = 3 (k + 2) is not prime for any k ∈ N.

Thus, there are no sequences of odd prime numbers in which the first number has the
form n = 3k + 2

This exhausts all possibilities.

Hence, {3, 5, 7} is the only sequence of three consecutive odd prime numbers.
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11. A local high school sells season tickets to their home football games. The season tickets
are sold as single season tickets ($60 apiece) or in pars of season tickets ($105 per pair,
so that both Mom and Dad can watch “Junior”). If total sales from season tickets
amounts to $41,640, how many single season tickets and season ticket pairs have been
sold? (Assume that at least one of each are sold. There are about 100 possibilities.
List the “general formula.”In addition, list the first three (x, y) pairs, as well as the
last three (x, y) pairs.)

Let x be the number of single season tickets that are sold

Let y be the number of season ticket pairs that are sold

Then 60︸︷︷︸
a

x + 105︸︷︷︸
b

y = 41640︸ ︷︷ ︸
c

First, we should check to make sure that this pair of Diophantine equations has a
solution.

d = gcd (60, 105) = 15

Also: 41640 = 2776 (15) + 0

Since d|c, the system has a solution.

We now use the Euclidean Algorithm to find a particular solution (x0, y0) to the related
equation

60︸︷︷︸
a

x + 105︸︷︷︸
b

y = 15

105 = (1) (60) + 45 (Eq. 1)

60 = (1) (45) + 15 (Eq. 2)

45 = (3) (15) + 0

From Eq. 2, 15 = 60− 45 (Eq. 3)

From Eq. 1, 45 = 105− 60

Substituting Eq. 1 into Eq. 3, We have: 15 = 60− (105− 60)⇒ 15 = (2) (60)− 105

We must rewrite this in the form of our original “equation,”60x + 105y = 41640

Thus, we have: 60 (2) + 105 (−1) = 15
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To get our particular solution, we must multiply both sides by c
d
= 41640

15
= 2776

⇒ 2776 (60 (2) + 105 (−1)) = 2776 (15)

⇒ 60 (2 · 2776) + 105 (−1 · 2776) = 41640

⇒ 60(5552)︸ ︷︷ ︸
xp

+ 105(−2776)︸ ︷︷ ︸
yp

= 41640

Thus, (xp, yp) = (5552,−2776)

All other solutions are of the form: (xp, yp) +
(
b
d
t,−a

d
t
)
, for t ∈ Z

i.e., (5552,−2776) +
(
105
15
t,−60

15
t
)
, for t ∈ Z

(x, y) = (5552,−2776) + (7t,−4t) , for t ∈ Z

x = 5552 + 7t; y = −2776− 4t, for t ∈ Z

Only those values of t which yield values of x ≥ 1 and y ≥ 1 are acceptable.

This yields: 1 ≤ 5552 + 7t and 1 ≤ −2776− 4t

⇒ 1− 5552 ≤ 7t and 2777 ≤ −4t

⇒ −5551 ≤ 7t and 2777 ≤ −4t

⇒ −5551
7
≤ t and −2777

4
≥ t

⇒ −5551
7
≤ t ≤ −2777

4

⇒ −793 ≤ t ≤ −694.25

Since t is an integer, this inequality becomes −793 ≤ t ≤ −695

i.e., x = 5552 + 7t; y = −2776− 4t, for t ∈ Z and −793 ≤ t ≤ −695

For t = −793,−792,−791, . . . ,−697,−696,−695, we have:
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t = −793 x = 5552 + 7 (−793) = 1 y = −2776− 4 (−793) = 396

t = −792 x = 5552 + 7 (−792) = 8 y = −2776− 4 (−792) = 392

t = −791 x = 5552 + 7 (−791) = 15 y = −2776− 4 (−791) = 388
...

...
...

t = −697 x = 5552 + 7 (−697) = 673 y = −2776− 4 (−697) = 12

t = −696 x = 5552 + 7 (−696) = 680 y = −2776− 4 (−696) = 8

t = −695 x = 5552 + 7 (−695) = 687 y = −2776− 4 (−695) = 4

12. Prove: If p 6= 5 is an odd prime number, then either p2 − 1 or p2 + 1 is divisible by 10

Proof. Let the hypothesis be given. (i.e., Suppose that p 6= 5 is an odd prime number.)

Our strategy will be to show that 2| (p2 − 1) and 2| (p2 + 1) , and that either:

5| (p2 − 1) , in which case (2 · 5) | (p2 − 1) , by Euclid’s Lemma,

or

5| (p2 + 1) , in which case (2 · 5) | (p2 + 1) , by Euclid’s Lemma.

2| (p2 − 1) and 2| (p2 + 1)

To show that 2| (p2 − 1) and 2| (p2 + 1) , observe that since p is an odd prime, p = 2k+1,
for some natural number k.

⇒ p2 = (2k + 1)2 = 4k2 + 4k + 1 = 2 (2k2 + 2k) + 1

i.e., p2 = 2 (2k2 + 2k) + 1

Hence, p2 − 1 = [2 (2k2 + 2k) + 1]− 1 = 2 (2k2 + 2k)

i.e., 2| (p2 − 1)

Similarly, p2 + 1 = [2 (2k2 + 2k) + 1] + 1 = 2 (2k2 + 2k) + 2 = 2 (2k2 + 2k + 1)

i.e., 2| (p2 + 1)
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5| (p2 − 1) or 5| (p2 + 1)

Note that since p 6= 5 and p is a prime number, 5 - p.Otherwise, p would not be prime.

Thus, by the Division Algorithm, p must have one of the following four forms:

p = 5n+1, in which case, p2 = (5n+ 1)2 = 25n2+10n+1 = 5 (5n2 + 2n)+1 = 5k+1

p = 5n+2, in which case, p2 = (5n+ 2)2 = 25n2+20n+4 = 5 (5n2 + 4n)+4 = 5k+4

= (5k + 4) + 1− 1 = (5k + 5)− 1 = 5 (k + 1)− 1

p = 5n+3, in which case, p2 = (5n+ 3)2 = 25n2+30n+9 = 5 (5n2 + 6n+ 1)+4 = 5k+4

= (5k + 4) + 1− 1 = (5k + 5)− 1 = 5 (k + 1)− 1

p = 5n+ 4, in which case, p2 = (5n+ 4)2 = 25n2 + 40n+ 16 = 5 (5n2 + 8n+ 3) + 1 =
5k + 1

i.e., p2 must either have the form: p2 = 5k + 1 or p2 = 5 (k + 1)− 1

In the case in which p2 = 5k + 1, p2 − 1 = 5k. (i.e., 5| (p2 − 1))

In the case in which p2 = 5 (k + 1)− 1, p2 + 1 = 5 (k + 1) . (i.e., 5| (p2 + 1))

This exhausts all cases. In all cases, either 5| (p2 − 1) or 5| (p2 + 1)

Remark: The proof above ismy proof. A number of my students submitted a different
proof - similar, but with minor variations. I like their proof better. What do you think?

Alternate Proof: Submitted by Chelsey Adamson, Jackson Baker, Madison Butler,
Bayleigh Edberg, Emmaline Hughes, Clayton Lang, Meagan Long, Elizabeth Rowe,
Lauren Veazey,

Proof. Let the hypothesis be given. (i.e., Suppose that p 6= 5 is an odd prime number.)

Applying the Division Algorithm to p, using d = 10 as the divisor, there are 4
possibilities:

p = 10q + 1; p = 10q + 3; p = 10q + 7; p = 10q + 9.
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p = 10q + 1

In this case, p2 = (10q + 1)2 = 100q2 + 20q + 1

p2 − 1 = (100q2 + 20q + 1)− 1 = 100q2 + 20q = 10 (10q2 + 2q)

i.e., p2 − 1 = 10 (10q2 + 2q) , and consequently, 10| (p2 − 1)

p = 10q + 3

In this case, p2 = (10q + 3)2 = 100q2 + 60q + 9

p2 + 1 = (100q2 + 60q + 9) + 1 = 100q2 + 60q + 10 = 10 (10q2 + 6q + 1)

i.e., p2 + 1 = 10 (10q2 + 6q + 1) , and consequently, 10| (p2 + 1)

p = 10q + 7

In this case, p2 = (10q + 7)2 = 100q2 + 140q + 49

p2 + 1 = (100q2 + 140q + 49) + 1 = 100q2 + 140q + 50 = 10 (10q2 + 14q + 5)

i.e., p2 + 1 = 10 (10q2 + 14q + 5) , and consequently, 10| (p2 + 1)

p = 10q + 9

In this case, p2 = (10q + 9)2 = 100q2 + 180q + 81

p2 − 1 = (100q2 + 180q + 81)− 1 = 100q2 + 180q + 80 = 10 (10q2 + 18q + 8)

i.e., p2 − 1 = 10 (0q2 + 18q + 8) , and consequently, 10| (p2 − 1)

This exhausts all cases, and in each case either 10| (p2 − 1) or 10| (p2 + 1)
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13. Prove: A positive integer a > 1 is a perfect square if and only if, in the canonical form
of a, all of the exponents of the primes are even integers.

Proof. Let a > 1 be a positive integer.

(a is a perfect square.) ⇒ (In the canonical form of a, all of the exponents of the primes are even integers.)

Suppose that a > 1 is a perfect square.

Then a = b2, for some natural number b > 1

By the Fundamental Theorem of Arithmetic, b = pk11 p
k2
2 · · · pkrr , for primes p1 < p1 <

. . . < pr.

a = b2 =
(
pk11 p

k2
2 · · · pkrr

)2
= p2k11 p2k22 · · · p2krr

i.e., a = p2k11 p2k22 · · · p2krr .

Note that, in the canonical form of a, all of the exponents of the primes are even
integers.

(In the canonical form of a, all of the exponents of the primes are even integers.) ⇒ (a is a perfect square.)

Suppose that a > 1 and that, in the canonical form of a, all of the exponents of the
primes are even integers.

Then a = p2k11 p2k22 · · · p2krr , for primes p1 < p1 < . . . < pr.

⇒ a = p2k11 p2k22 · · · p2krr =
(
pk11 p

k2
2 · · · pkrr

)2
i.e., a is a perfect square.
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