
MTH 4422 Final Exam Study Guide - Solutions
Spring 2023

Pat Rossi Name

Instructions. Answer the following questions thoroughly.

1. Explain how the derivative of f (x) is computed numerically, using the Forward Dif-
ference Method.

Forward Difference: f ′ (x1) is the slope of the line tangent to the graph of f (x) at
the point (x1, f (x1)) . If we go h units to the right of x1 and plot the corresponding
point on the graph of f (x) , this point and the point (x1, f (x1)) can be used to draw
a secant. The slope of this secant is approximately the same as the slope of the line
tangent, f ′ (x1) (see below). This yields the approximation:

f ′ (x1) ≈
f (x1 + h)− f (x1)

h
.

Furthermore, this approximation improves with smaller values of h. To simulate the
process of letting h→ 0, we cut h in half each iteration, and stop when two successive
approximations are within the desired tolerance. The last approximation is our answer.

y = f(x)

x1 (x1 + h)

(x1 + h, f(x1 + h))

secant

tangent

2. Explain how the derivative of f (x) is computed numerically, using the Central Differ-
ence Method.

Central Difference: f ′ (x1) is the slope of the line tangent to the graph of f (x)
at the point (x1, f (x1)) . If we go h units in either direction of x1 and plot the cor-
responding points on the graph of f (x) , these points can be used to draw a chord
with endpoints (x1 − h, f (x1 − h)) and (x1 + h, f (x1 + h)) . The slope of this chord
is approximately the same as the slope of the line tangent, f ′ (x1) (see below). This
yields the approximation:

f ′ (x1) ≈
f (x1 + h)− f (x1 − h)

2h
.

Furthermore, this approximation improves with smaller values of h. To simulate the
process of letting h→ 0, we cut h in half each iteration, and stop when two successive
approximations are within the desired tolerance. The last approximation is our answer.

y = f(x)

x1 (x1 + h)

(x1 + h, f(x1 + h))

chord

tangent

(x1 – h)

(x1 – h, f(x1 – h))

2

3. Explain how Taylor’s Series can be used to approximate derivatives of higher order. In
particular, explain how the second derivative of a function f (x) can be approximated.

Consider the Taylor Series expansion for f (x) with center x0 :

f (x) = f (x0) + f ′ (x0) (x− x0) + f ′′ (x0)
(x− x0)2

2
+ . . .

If we define h = x− x0, and hence, x = x0 + h, we have:

f (x0 + h) = f (x0) + f ′ (x0)h+ f ′′ (x0)
h2

2
+ . . .

For some number ψ1 with x0 < ψ1 < x0 + h, we can write this as:

f (x0 + h) = f (x0) + f ′ (x0)h+ f ′′ (x0)
h2

2
+ f ′′′ (x0)

h3

3!
+ f (4) (ψ1)

h4

4!
(1)

Similarly, for a number ψ2, with x0 − h < ψ2 < x0, we have:

f (x0 − h) = f (x0)− f ′ (x0)h+ f ′′ (x0)
h2

2
− f ′′′ (x0)

h3

3!
+ f (4) (ψ2)

h4

4!
. (2)

Adding equations 1 and 2 yields:

f (x0 + h) + f (x0 − h) = 2f (x0) + f ′′ (x0)h
2 + f (4) (ψ1)

h4

4!
+ f (4) (ψ2)

h4

4!
.

Solving for f ′′ (x0) , we have:

f ′′ (x0) =
1

h2
[f (x0 + h)− 2f (x0) + f (x0 − h)]− h2

[
f (4) (ψ1)

4!
+
f (4) (ψ2)

4!

]
Truncating the last term, we have:

f ′′ (x0) ≈
1

h2
[f (x0 + h)− 2f (x0) + f (x0 − h)] ,

with error of order h2. This allows us to compute the second derivative in terms of the
values of the function itself - something we might want to do if we don’t know what
our function f (x) is, but just have the data values.

3

4. Describe and explain Euler’s Method (the “Bow and Arrow Method”), for solving a
first order linear differential equation, using a geometric approach.

This algorithm is designed to approximate the solution of first order linear differential
equations of the form: y′ = f (y, x) , on the interval [a, b] , subject to initial condition
y (a) = α. (The solution of such an equation is the function y evaluated at x = b. (i.e.
the solution is y (b) .)) Geometrically, Euler’s method is based on the assumption that
the graph of a function y (x) can be approximated by many small line segments, as
shown below.

Given a known point on the graph of y (x) , let’s say (xi, y (xi)) , we can approximate the
y-coordinate of another point (xi+1, y (xi+1)) close by on the graph, by travelling along
the line tangent to the graph at the point (xi, y (xi)) , until we reach the x-coordinate
xi+1. (See below.) We call this “shooting the arrow.”

xi xi+1

(xi, y(xi))

(xi+1, y(xi+1))

The ycoordinate of this point is
the approximate value of y(xi+1)

If h is small, this will be a good approximation. How do we get the value of yi+1 ≈
y (xi+1)? We use the slope formula: m = y2−y1

x2−x1 . Rewritten in terms of our points
(xi, y (xi)) , and (xi+1, y (xi+1)) , this becomes:

y′ (xi) =
yi+1 − yi
xi+1 − xi

.

(Recall, that y′ (xi) is the slope of the line tangent.)

⇒ yi+1 − yi = y′ (xi) (xi+1 − xi)
⇒ yi+1 = yi + y′ (xi) (xi+1 − xi)
Since y = f (y, x) , and h = xi+1 − xi, this becomes:

yi+1 = yi + f (yi, xi)h.

4

This equation can be used recursively to generate the values of y for each value of xi.

Our solution is y (b) ≈ yn.

(The approximation to y is shown graphically, below)

x0

5

5. Describe and explain Euler’s Method (the “Bow and Arrow Method”) using the Tay-
lor’s Series approach.

This algorithm is designed to approximate the solution of first order linear differential
equations of the form: y′ = f (y, x) , on the interval [a, b] , subject to initial condition
y (a) = α. (The solution of such an equation is the function y, evaluated at the point
x = b. (i.e., the solution is y (b) .)) To see how we derive an approximation for the
function y at certain values of x, consider the Taylor series expansion of the function
y about the point x0 :

y (x) = y (x0) + y′ (x0) (x− x0) + y′′ (x0)
(x− x0)2

2
+ . . .+ y(n) (x0)

(x− x0)n

n!
+ . . .

Letting h = x− x0, this becomes:

y (x0 + h) = y (x0) + y′ (x0)h+ y′′ (x0)
h2

2
+ . . .+ y(n) (x0)

hn

n!
+ . . .

This can be expressed as a finite series:

y (x0 + h) = y (x0) + y′ (x0)h+ y′′ (ψ)
h2

2
,

where x0 < ψ < x0 + h. Truncating the last (error) term, we have:

y (x0 + h) ≈ y (x0) + y′ (x0)h. (3)

Partitioning the interval [a, b] into n sub-intervals of equal length h, we define:

xi = a+ ih, xi+1 = xi + h, and yi = y (xi) .

Proceeding inductively, equation 3 becomes:

y (xi + h) ≈ y (xi) + y′ (xi)h,

which can, in turn, be written as:

yi+1 ≈ yi + y′ (xi)h.

But notice that since y is the solution of the equation y′ = f (y, x) , this becomes:

yi+1 ≈ yi + f (yi, xi)h.

Thus, we have a way of inductively generating the values of y (x) for values of x =
x1, x2, . . . , xn.

Our solution is y (b) ≈ yn.

6

6. Explain how a system of n equations in n variables is solved using forward elimination,
maximal pivoting, and back substitution.

The system of equations

a11x1 + a12x2 + a13x3 + . . . + a1nxn = b1
a21x2 + a22x2 + a23x3 + . . . + a2nxn = b2
...

...
...

...
...

an1x1 + an2x2 + an3x3 + . . . + annxn = bn

can be represented in matrix form as:
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

x1
x2
...
xn

 =

b1
b2
...
bn

 ,
and more compactly as:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
b1
b2
...
bn

 .
Theoretically, we would solve this matrix equation by:

(a) Performing forward elimination (eliminating below the main diagonal) and in the
process, making the diagonal elements equal to 1

(b) Performing backward elimination (eliminating above the main diagonal)
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
b1
b2
...
bn

⇒

1 a∗12 . . . a∗1n
0 1 . . . a∗2n
...
.

...
0 . . . 0 1

∣∣∣∣∣∣∣∣∣
b∗1
b∗2
...
b∗n

⇒

1 0 . . . 0
0 1 . . . 0
...
.

...
0 . . . 0 1

∣∣∣∣∣∣∣∣∣
b∗1
b∗2
...
b∗n

This equivalent to:

x1
x2
...
xn

 =
∣∣∣∣∣∣∣∣∣
b∗1
b∗2
...
b∗n

 ,
which is the solution of the system of equations.

7

When it comes to solving such a system of equations by computer, however, there’s
a problem — round-off error. Severe round-off error occurs when we divide a large
number by a small number (i.e., numerator is several orders of magnitude larger than
the denominator) and then propagate and magnify this error through numerous ensuing
computations.

When solving a system of a computations numerically (i.e. using a computer), we can
effectively minimize such round-off error during forward elimination, using a scheme
called maximal pivoting.

Here’s how maximal pivoting is employed:

Recall that when eliminating below the main diagonal in column j (for j = 1 to

(n− 1)), we replace row i with the sum of itself plus
(
− aij
ajj

)
· row j, for i = (j + 1)

to n. We run the risk of creating large round-off error if aij is significantly larger then
ajj.To prevent this from happening, we compare all entries in column j, which lie on
or below the main diagonal. Let’s say that row k is the row having the largest entry
(magnitude-wise) in column j. Then, before eliminating the entries in column j which
lie below the main diagonal, we switch rows j and k.

This assures us that when we eliminate the entries lying below the main diagonal in
column j,by replacing row i with the sum of itself plus

(
− aij
ajj

)
·row j, the denominator

ajj is always at least as large as the numerator aij.This is called maximal pivoting.

Thus, using forward elimination with maximal pivoting, we transform the original
system to the “upper triangular”system show below:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
b1
b2
...
bn

⇒

a∗11 a∗12 . . . a∗1n
0 a∗22 . . . a∗2n
...

.
...

0 . . . 0 a∗nn

∣∣∣∣∣∣∣∣∣
b∗1
b∗2
...
b∗n

At this point, we might be tempted to perform backward elimination. The only problem
is that if we do, then we can’t employ maximal pivoting techniques as we did in forward
elimination. The reason is that in order to employ maximal pivoting, we must switch
rows. But rows can’t be switched during backward elimination, otherwise the matrix
won’t remain “upper triangular.”(shown below)

a∗11 a∗12 . . . a∗1n
0 a∗22 . . . a∗2n
...

.
...

0 . . . 0 a∗nn

∣∣∣∣∣∣∣∣∣
b∗1
b∗2
...
b∗n

⇒

a∗11 a∗12 . . . a∗1n
0 . . . 0 a∗nn
...

.
...

0 a∗22 . . . a∗2n

∣∣∣∣∣∣∣∣∣
b∗1
b∗n
...
b∗2

8

So given
a∗11 a∗12 . . . a∗1n
0 a∗22 . . . a∗2n
...

.
...

0 . . . 0 a∗nn

∣∣∣∣∣∣∣∣∣
b∗1
b∗2
...
b∗n

 ,
we solve the equation in row n for xn. (i.e., solve a∗nnxn = b∗n for xn)

xn =
b∗n
a∗nn

.

Having solved for xn,we proceed to solve the equation in row (n− 1) and solve for
xn−1. (i.e., solve an−1,n−1xn−1 + an−1,nxn = bn−1)

xn−1 =
bn−1 − an−1,nxn

an−1,n−1

Inductively, we solve for xi as follows:

xi =
bi − ai,i+1xi+1 − . . .− ai,n−1xn−1 − ai,nxn

ai,i
.

This process is called “backward substitution.”

9

