MTH 3311 - Practice Test \#3 - Solutions

FALL 2018
Pat Rossi
Name \qquad

Show CLEARLY how you arrive at you answers!

1. Find the general solution to the equation $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=5 x^{4}+3 x^{\frac{1}{2}}$

First, find the solution to the complementary equation $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0$
Our strategy is to seek solutions of the form:

$$
\begin{aligned}
& y=x^{\lambda} \\
\Rightarrow & y^{\prime}=\lambda x^{\lambda-1} \\
\Rightarrow & y^{\prime \prime}=\lambda(\lambda-1) x^{\lambda-2}
\end{aligned}
$$

Plugging these into the complementary equation $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0$, we have:

$$
\begin{aligned}
& x^{2} \lambda(\lambda-1) x^{\lambda-2}+5 x \lambda x^{\lambda-1}+4 x^{\lambda}=0 \\
\Rightarrow & \lambda(\lambda-1) x^{\lambda}+5 \lambda x^{\lambda}+4 x^{\lambda}=0 \\
\Rightarrow & \lambda(\lambda-1)+5 \lambda+4=0 \\
\Rightarrow & \lambda^{2}+4 \lambda+4=0 \\
\Rightarrow & (\lambda+2)^{2}=0 \\
\Rightarrow & \lambda_{1}=\lambda_{2}=-2 ; \text { (Double Root) }
\end{aligned}
$$

Our complementary solution should be of the form:
$y_{c}=c_{1} x^{\lambda_{1}}+c_{2} x^{\lambda_{2}}=c_{1} x^{-2}+c_{2} x^{-2}$
Oops! $c_{1} x^{-2}$ and $c_{2} x^{-2}$ are not independent solutions - they are the same solution.
To find another independent solution, we multiply by $\ln (x)$.
(This is one way in which our approach for Euler Equations differs from our approach for Equations with Constant Coefficients. With Constant Coefficients, we multiply one of the terms by x to get another independent solution. With Euler Equations, we multiply by $\ln (x)$.)

So our complementary solution is:

$$
y_{c}=c_{1} x^{-2}+c_{2} \ln (x) x^{-2}
$$

Next, we find our particular solution
Since the right hand side of the equation is a linear combination of powers of x, the Method of Undetermined Coefficients will work. This is another way in which Euler Equations differ from Equations with Constant Coefficients.

With Equations with Constant Coefficients, The Method of Undetermined Coefficients works whenever the right hand side is a linear combination of sines and cosines, and/or exponential functions, and/or polynomials.

With Euler Equations, The Method of Undetermined Coefficients works whenever the right hand side is any linear combination of powers of x - and that includes negative powers of x and fractional powers of x. The Method of Undetermined Coefficients WILL NOT work if the right hand side contains trig functions or exponentials.

Since the right hand side is $5 x^{4}+3 x^{\frac{1}{2}}$, we guess that the particular solution is a linear combination of exactly those powers of x that appear on the right hand side of the equation:

$$
\begin{aligned}
& y=A x^{4}+B x^{\frac{1}{2}} \\
\Rightarrow & y^{\prime}=4 A x^{3}+\frac{1}{2} B x^{-\frac{1}{2}} \\
\Rightarrow & y^{\prime \prime}=12 A x^{2}-\frac{1}{4} B x^{-\frac{3}{2}}
\end{aligned}
$$

Plugging these in the equation: $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=5 x^{4}+3 x^{\frac{1}{2}}$, we have:

$$
\begin{aligned}
& x^{2} \underbrace{\left(12 A x^{2}-\frac{1}{4} B x^{-\frac{3}{2}}\right)}_{y^{\prime \prime}}+\underbrace{5 x\left(4 A x^{3}+\frac{1}{2} B x^{-\frac{1}{2}}\right)}_{y^{\prime}}+4 \underbrace{\left(A x^{4}+B x^{\frac{1}{2}}\right)}_{y}=5 x^{4}+3 x^{\frac{1}{2}} \\
\Rightarrow & \left(12 A x^{4}-\frac{1}{4} B x^{\frac{1}{2}}\right)+5\left(4 A x^{4}+\frac{1}{2} B x^{\frac{1}{2}}\right)+4\left(A x^{4}+B x^{\frac{1}{2}}\right)=5 x^{4}+3 x^{\frac{1}{2}} \\
\Rightarrow & (12+20+4) A x^{4}+\left(-\frac{1}{4}+\frac{5}{2}+4\right) B x^{\frac{1}{2}}=5 x^{4}+3 x^{\frac{1}{2}} \\
& 36 A x^{4}+\frac{25}{4} B x^{\frac{1}{2}}=5 x^{4}+3 x^{\frac{1}{2}}
\end{aligned}
$$

Equating Coefficients of like powers of x, we have:
$36 A=5 \Rightarrow A=\frac{5}{36}$
$\frac{25}{4} B=3 \Rightarrow B=\frac{12}{25}$
$y_{p}=A x^{4}+B x^{\frac{1}{2}}=\frac{5}{36} x^{4}+\frac{12}{25} x^{\frac{1}{2}}$
Our general solution is $y=y_{p}+y_{c}$
$y=\frac{5}{36} x^{4}+\frac{12}{25} x^{\frac{1}{2}}+c_{1} x^{-2}+c_{2} \ln (x) x^{-2}$

$$
y=\frac{5}{36} x^{4}+\frac{12}{25} x^{\frac{1}{2}}+c_{1} x^{-2}+c_{2} \ln (x) x^{-2}
$$

2. Find the general solution to the equation $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=5 x^{-2}$

From the previous exercise, the complementary solution is:
$y_{c}=c_{1} x^{-2}+c_{2} \ln (x) x^{-2}$
Since the right hand side of the equation is $5 x^{-2}$, we guess that our particular solution is Thus, we guess that:
$y_{p}=A x^{-2}$ Oops! This is one of the independent terms of our complementary solution.

So, we multiply by $\ln (x)$, which yields:
$y_{p}=A \ln (x) x^{-2} \quad$ Oops! This is the other independent term of our complementary solution.

What do we do now? You guessed it - multiply by $\ln (x)$ again! This yields:

$$
y_{p}=A(\ln (x))^{2} x^{-2}
$$

$\Rightarrow y^{\prime}=2 A \ln (x) \frac{1}{x} x^{-2}-2 x^{-3} A(\ln (x))^{2}=2 A \ln (x) x^{-3}-2 x^{-3} A(\ln (x))^{2}$
i.e., $y^{\prime}=2 A \ln (x) x^{-3}-2 x^{-3} A(\ln (x))^{2}$
$\Rightarrow y^{\prime \prime}=2 A \frac{1}{x} x^{-3}-6 A x^{-4} \ln (x)+6 x^{-4} A(\ln (x))^{2}+2 \ln (x) \frac{1}{x}\left(-2 A x^{-3}\right)$
i.e., $y^{\prime \prime}=2 A x^{-4}-6 A x^{-4} \ln (x)+6 x^{-4} A(\ln (x))^{2}-4 A \ln (x) x^{-4}$

Plugging these into the equation $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=5 x^{-2}$, we have:
$\left(2 A x^{-2}-10 A x^{-2} \ln (x)+6 x^{-2} A(\ln (x))^{2}\right)+\left(10 A \ln (x) x^{-2}-10 x^{-2} A(\ln (x))^{2}\right)+4 A(\ln (x))^{2} x^{-2}$
$=5 x^{-2}$
This reduces to: $2 A x^{-2}=5 x^{-2}$
$\Rightarrow 2 A=5 \Rightarrow A=\frac{5}{2}$
$\Rightarrow y_{p}=A(\ln (x))^{2} x^{-2} \Rightarrow y_{p}=\frac{5}{2}(\ln (x))^{2} x^{-2}$
Our general solution is $y=y_{p}+y_{c}=\frac{5}{2}(\ln (x))^{2} x^{-2}+c_{1} x^{-2}+c_{2} \ln (x) x^{-2}$

Our general solution is $y=\frac{5}{2}(\ln (x))^{2} x^{-2}+c_{1} x^{-2}+c_{2} \ln (x) x^{-2}$
3. $x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=\ln (x)$

First, find the solution to the complementary equation $x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0$
Our strategy is to seek solutions of the form:

$$
\begin{aligned}
& y=x^{\lambda} \\
\Rightarrow & y^{\prime}=\lambda x^{\lambda-1} \\
\Rightarrow & y^{\prime \prime}=\lambda(\lambda-1) x^{\lambda-2}=\left(\lambda^{2}-\lambda\right) x^{\lambda-2}
\end{aligned}
$$

Plugging these into the complementary equation $x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0$, we have:

$$
\begin{aligned}
& x^{2}\left(\lambda^{2}-\lambda\right) x^{\lambda-2}+5 x \lambda x^{\lambda-1}+3 x^{\lambda}=0 \\
\Rightarrow & \left(\lambda^{2}-\lambda\right) x^{\lambda}+5 \lambda x^{\lambda}+3 x^{\lambda}=0 \\
\Rightarrow & \left(\lambda^{2}-\lambda\right)+5 \lambda+3=0 \\
\Rightarrow & \lambda^{2}+4 \lambda+3=0 \\
\Rightarrow & (\lambda+1)(\lambda+3)=0 \\
\Rightarrow & \lambda_{1}=-1 ; \lambda_{2}=-3
\end{aligned}
$$

Our complementary solution is:
$y_{c}=c_{1} x^{\lambda_{1}}+c_{2} x^{\lambda_{2}}=c_{1} x^{-1}+c_{2} x^{-3}$
Next, we find our particular solution
Since the right hand side of the equation is not a linear combination of powers of x, the Method of Undetermined Coefficients will not work. We must use Variation of Parameters.

Thus, we guess that:
$y=A(x) x^{-1}+B(x) x^{-3}$, where the pair $\{A(x), B(x)\}$ is any pair of functions that make $y=A(x) x^{-1}+B(x) x^{-3}$ the general solution to the original differential equation.

This is the first restriction that we impose on the pair $\{A(x), B(x)\}$.
We still have on restriction left to impose.
We will now compute the derivatives of y and plug them into the original equation:
$x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=\ln (x)$.
$y=A(x) x^{-1}+B(x) x^{-3}$

$$
y^{\prime}=A^{\prime}(x) x^{-1}-A(x) x^{-2}+B^{\prime}(x) x^{-3}-3 B(x) x^{-4}
$$

We now impose our second restriction: $A^{\prime}(x) x^{-1}+B^{\prime}(x) x^{-3}=0$
This results in:

$$
\begin{aligned}
& \Rightarrow y^{\prime}=-A(x) x^{-2}-3 B(x) x^{-4} \\
& \Rightarrow y^{\prime \prime}=-A^{\prime}(x) x^{-2}+2 A(x) x^{-3}-3 B^{\prime}(x) x^{-4}+12 B(x) x^{-5}
\end{aligned}
$$

To find $A(x)$ and $B(x)$ we plug $y, y^{\prime}, y^{\prime \prime}$ into the original equation, $x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=$ $\ln (x)$.

This yields:

$x^{2} y^{\prime \prime}$	$=$	$-A^{\prime}(x)$	$+2 A(x) x^{-1}$	$-3 B^{\prime}(x) x^{-2}$	$+12 B(x) x^{-3}$
$+5 x y^{\prime}$	$=$		$-5 A(x) x^{-1}$		$-15 B(x) x^{-3}$
$+3 y$	$=$	$+3 A(x) x^{-1}$		$+3 B(x) x^{-3}$	
$x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y$	$=$	$-A^{\prime}(x)$		$-3 B^{\prime}(x) x^{-2}$	$=\ln (x)$

i.e., $-A^{\prime}(x)-3 B^{\prime}(x) x^{-2}=\ln (x) \quad$ (Eq. 1)

To eliminate one of the unknown functions, we rely on our second restriction: $A^{\prime}(x) x^{-1}+$ $B^{\prime}(x) x^{-3}=0$

$$
\begin{align*}
& \Rightarrow A^{\prime}(x)+B^{\prime}(x) x^{-2}=0 \\
& \Rightarrow A^{\prime}(x)=-B^{\prime}(x) x^{-2} \tag{Eq.2}\\
& \Rightarrow-A^{\prime}(x)=B^{\prime}(x) x^{-2}
\end{align*}
$$

Plugging this into (Eq. 1), we have:

$$
\begin{align*}
& B^{\prime}(x) x^{-2}-3 B^{\prime}(x) x^{-2}=\ln (x) \\
& \Rightarrow-2 B^{\prime}(x) x^{-2}=\ln (x) \\
& \Rightarrow B^{\prime}(x)=-\frac{1}{2} x^{2} \ln (x) \quad \text { (Eq. 3) } \tag{Eq.3}\\
& \Rightarrow B(x)=-\frac{1}{2} \int x^{2} \ln (x) d x=-\frac{1}{2} \int \underbrace{\ln (x)}_{u} \underbrace{x^{2}}_{d v} d x=-\frac{1}{2}\left[u v-\int v d u\right] \\
& \quad=-\frac{1}{2} \ln (x)\left(\frac{1}{3} x^{3}\right)+\frac{1}{2} \int\left(\frac{1}{3} x^{3}\right)\left(\frac{1}{x}\right) d x \\
& \quad=-\frac{1}{6} x^{3} \ln (x)+\frac{1}{6} \int x^{2} d x=-\frac{1}{6} x^{3} \ln (x)+\frac{1}{18} x^{3}+C_{3}
\end{align*}
$$

i.e., $B(x)=-\frac{1}{6} x^{3} \ln (x)+\frac{1}{18} x^{3}+C_{3}$

To find $A^{\prime}(x)$, recall, that from (Eq. 3), $B^{\prime}(x)=-\frac{1}{2} x^{2} \ln (x)$
Plugging this into (Eq. 2), we have:

$$
\begin{aligned}
& A^{\prime}(x)=\frac{1}{2} x^{2} \ln (x) x^{-2}=\frac{1}{2} \ln (x) \\
& \Rightarrow A(x)=\frac{1}{2} \int \ln (x) d x=\frac{1}{2}(x \ln (x)-x)+C_{4} \\
& \text { i.e., } A(x)=\frac{1}{2} x \ln (x)-\frac{1}{2} x+C_{5}
\end{aligned}
$$

The solution to the original equation is:

$$
\begin{aligned}
y & =A(x) x^{-1}+B(x) x^{-3} \\
& =\left(\frac{1}{2} x \ln (x)-\frac{1}{2} x+C_{5}\right) x^{-1}+\left(-\frac{1}{6} x^{3} \ln (x)+\frac{1}{18} x^{3}+C_{3}\right) x^{-3} \\
& =\frac{1}{2} \ln (x)-\frac{1}{2}+C_{5} x^{-1}-\frac{1}{6} \ln (x)+\frac{1}{18}+C_{3} x^{-3} \\
& =\frac{1}{3} \ln (x)-\frac{4}{9}+C_{5} x^{-1}+C_{3} x^{-3}
\end{aligned}
$$

The solution to the original equation is: $y_{g}=\frac{1}{3} \ln (x)-\frac{4}{9}+C_{5} x^{-1}+C_{3} x^{-3}$

