MTH 3318 Test \#1

Spring 2024

Pat Rossi
Name \qquad

Instructions. Document your work fully.
For problems 1- 2 prove one using Mathematical Induction.

1. $2+4+6+\ldots+2 n=n^{2}+n$
i.e. $\sum_{i=1}^{n} 2 i=n^{2}+n$
2. $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$ i.e. $\sum_{j=1}^{n} \frac{1}{(2 j-1)(2 j+1)}=\frac{n}{2 n+1}$

For problems 3-5 prove one using Mathematical Induction.
3. $2+6+10+\ldots+4 n-2=2 n^{2}$
i.e. $\sum_{i=1}^{n}(4 i-2)=2 n^{2}$
4. $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$
i.e. $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$
5. $\frac{n^{4}}{4}<1^{3}+2^{3}+3^{3}+\ldots+n^{3}$ all natural numbers, n.

For problems 6-7, prove one using Mathematical Induction:
6. For $0 \leq a \leq b$; prove that $a^{n} \leq b^{n}$.
7. Given that $\frac{d}{d x}\left[x^{0}\right]=0$ and $\frac{d}{d x}\left[x^{1}\right]=1$, prove that $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$. You may use the product rule: $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$.

For problems 8-9, prove one using Mathematical Induction:
8. $(1+x)^{n} \geq 1+n x$ for any natural number n and any real number $x \geq-1$.
9. Given that $\left|x_{1}+x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|$ (the Triangle Inequality); Prove by induction that: $\left|x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{n}\right|$ (the General Triangle Inequality).

