Problem Set 2.4; page 31

Summer 2023
Pat Rossi
Name \qquad

1. Find the $\operatorname{gcd}(143,227), \operatorname{gcd}(306,657), \operatorname{gcd}(272,1479)$.

We find all of these by using the Division Algorithm.
(a) $\operatorname{gcd}(143,227)$

$$
\begin{aligned}
& 277=q_{1}(143)+r_{1} \\
& 277=(1)(143)+134
\end{aligned}
$$

Repeat with 143 and 134.
$143=q_{2}(134)+r_{2}$
$143=(1)(134)+9$
Repeat with 134 and 9.
$134=q_{3}(9)+r_{3}$
$134=(14)(9)+8$
Repeat with 9 and 8.
$9=q_{4}(8)+r_{4}$
$9=(1)(8)+1$
Repeat with 8 and 1.
$8=q_{5}(1)+r_{1}$
$8=(8)(1)+0$
$\operatorname{gcd}(143,227)=$ last non-zero remainder
$\operatorname{gcd}(143,227)=1$
(b) $\operatorname{gcd}(306,657)$

$$
657=q_{1}(306)+r_{1}
$$

$$
657=(2)(306)+45
$$

Repeat with 306 and 45
$306=q_{2}(45)+r_{2}$
$306=(6)(45)+36$
Repeat with 45 and 36
$45=q_{3}(36)+r_{3}$
$45=(1)(36)+9$
Repeat with 36 and 9.
$36=q_{4}(9)+r_{4}$
$36=(4)(9)+0$
$\operatorname{gcd}(306,657)=$ the last non-zero remainder.
$\operatorname{gcd}(306,657)=9$
(c) $\operatorname{gcd}(272,1479)$
$1479=q_{1}(272)+r_{1}$
$1479=(5)(272)+119$
Repeat with 272 and 119.
$272=q_{2}(119)+r_{1}$
$272=(2)(119)+34$
Repeat with 119 and 34.
$119=q_{3}(34)+r_{3}$
$119=(3)(34)+17$
Repeat with 34 and 17.
$34=q_{4}(17)+r_{4}$
$34=(2)(17)+0$
$\operatorname{gcd}(272,1479)=$ last non-zero remainder
$\operatorname{gcd}(272,1479)=17$
2. Use the Euclidean Algorithm to obtain integers x and y satisfying the following:
(a) $\operatorname{gcd}(56,72)=56 x+72 y$

We find $\operatorname{gcd}(56,72)$ by using the Euclidean Algorithm, and then "retracing our steps."
$72=q_{1}(56)+r_{1}$
$72=(1)(56)+16$
Repeat using 56 and 16
$56=q_{2}(16)+r_{2}$
$56=(3)(16)+8$
(eq. 1)
Repeat using 16 and 8.
$16=q_{3}(8)+r_{3}$
$16=(2)(8)+0$
$\operatorname{gcd}(56,72)=$ last non-zero remainder
$\operatorname{gcd}(56,72)=8$
So, we want x and y such that $56 x+72 y=8$

$$
\begin{aligned}
& \quad 8=56-(3)(16) \quad \text { (From eq. 1) } \\
& 16=72-(1)(56) \quad \text { (From eq.2) } \\
& \Rightarrow 8=56-(3)(72-(1)(56)) \\
& \Rightarrow 8=(4)(56)-(3)(72) \\
& \text { i.e., } 56(4)+72(-3)=8
\end{aligned}
$$

Our particular solution is $\left(x_{0}, y_{0}\right)=(4,-3)$
The homogeneous solution is $\left(x_{h}, y_{h}\right)=\left(\frac{b}{d} t,-\frac{a}{d} t\right) ; \quad$ for $t \in \mathbb{Z}$

$$
=\left(\frac{72}{8} t,-\frac{56}{8} t\right)=(9 t,-7 t) ; \text { for } t \in \mathbb{Z}
$$

The general solution is the sum of the particular solution and the homogeneous solution.

$$
(x, y)=\left(x_{0}, y_{0}\right)+\left(\frac{b}{d} t,-\frac{a}{d} t\right)=(4,-3)+(9 t,-7 t)=(4+9 t,-3-7 t) ; \text { for } t \in \mathbf{Z}
$$

Hence, all solutions are of the form:

$$
\begin{gathered}
\quad(x, y)=(4+9 t,-3-7 t) ; \quad \text { for } t \in \mathbf{Z} \\
\text { i.e., } x=4+9 t ; \quad y=-3-7 t \quad \text { for } t \in \mathbf{Z}
\end{gathered}
$$

(b) $\operatorname{gcd}(24,138)=24 x+138 y$

We find gcd $(24,138)$ by using the Euclidean Algorithm, and then "retracing our steps."

$$
\begin{align*}
& 138=q_{1}(24)+r_{1} \\
& 138=(5)(24)+18 \tag{eq.2}
\end{align*}
$$

Repeat using 24 and 18.

$$
\begin{align*}
& 24=q_{2}(18)+r_{2} \\
& 24=(1)(18)+6 \tag{eq.1}
\end{align*}
$$

Repeat using 18 and 6.
$18=q_{3}(6)+r_{3}$
$18=(3)(6)+0$
$\operatorname{gcd}(24,138)=$ last non-zero remainder
$\operatorname{gcd}(24,138)=6$
So, we want x and y such that $24 x+138 y=6$

$$
\begin{aligned}
& \quad 6=24-(1)(18) \quad \text { (From eq. 1) } \\
& \qquad 18=138-(5)(24) \quad \text { (From eq. 2) } \\
& \Rightarrow 6=24-(1)(138-(5)(24)) \\
& \Rightarrow 6=(6)(24)-(1)(138) \\
& \text { i.e., } 24(6)+138(-1)=6
\end{aligned}
$$

Our particular solution is $\left(x_{0}, y_{0}\right)=(6,-1)$
The homogeneous solution is $\left(x_{h}, y_{h}\right)=\left(\frac{b}{d} t,-\frac{a}{d} t\right) ; \quad$ for $t \in \mathbb{Z}$

$$
=\left(\frac{138}{6} t,-\frac{24}{6} t\right)=(23 t,-4 t) ; \text { for } t \in \mathbb{Z}
$$

The general solution is the sum of the particular solution and the homogeneous solution.

$$
(x, y)=\left(x_{0}, y_{0}\right)+\left(\frac{b}{d} t,-\frac{a}{d} t\right)=(6,-1)+(23 t,-4 t)=(6+23 t,-1-4 t) ; \text { for } t \in \mathbf{Z}
$$

Hence, all solutions are of the form:

$$
\begin{gathered}
\qquad(x, y)=(6+23 t,-1-4 t) ; \text { for } t \in \mathbf{Z} \\
\text { i.e., } x=6+23 t ; \quad y=-1-4 t \quad \text { for } t \in \mathbf{Z}
\end{gathered}
$$

(c) $\operatorname{gcd}(119,272)=119 x+272 y$

We find $\operatorname{gcd}(119,272)$ by using the Euclidean Algorithm, and then "retracing our steps."
$272=q_{1} 119+r_{1}$
$272=(2)(119)+34$
(eq. 2)
Repeat for 119 and 34

$$
\begin{align*}
& 119=q_{2}(34)+r_{2} \\
& 119=(3)(34)+17 \tag{eq.1}
\end{align*}
$$

Repeat for 34 and 17

$$
\begin{aligned}
& 34=q_{3}(17)+r_{3} \\
& 34=(2)(17)+0 \\
& \operatorname{gcd}(119,272)=\text { last non-zero remainder } \\
& \operatorname{gcd}(119,272)=17
\end{aligned}
$$

So, we want x and y such that $119 x+272 y=17$

$$
\begin{aligned}
& \quad 17=119-(3)(34) \quad \text { (From eq. } 1) \\
& \qquad 34=272-(2)(119) \text { (From eq. 2) } \\
& \Rightarrow 17=119-(3)(272-(2)(119)) \\
& \Rightarrow 17=(7)(119)-(3)(272) \\
& \text { i.e., } 119(7)+272(-3)=17
\end{aligned}
$$

Our particular solution is $\left(x_{0}, y_{0}\right)=(7,-3)$
The homogeneous solution is $\left(x_{h}, y_{h}\right)=\left(\frac{b}{d} t,-\frac{a}{d} t\right) ; \quad$ for $t \in \mathbb{Z}$

$$
=\left(\frac{272}{17} t,-\frac{119}{17} t\right)=(16 t,-7 t) ; \text { for } t \in \mathbb{Z}
$$

The general solution is the sum of the particular solution and the homogeneous solution.

$$
(x, y)=\left(x_{0}, y_{0}\right)+\left(\frac{b}{d} t,-\frac{a}{d} t\right)=(7,-3)+(16 t,-7 t)=(7+16 t,-3-7 t) ; \text { for } t \in \mathbf{Z}
$$

Hence, all solutions are of the form:

$$
\begin{gathered}
\qquad(x, y)=(7+16 t,-3-7 t) ; \quad \text { for } t \in \mathbf{Z} \\
\text { i.e., } x=7+16 t ; \quad y=-3-7 t \quad \text { for } t \in \mathbf{Z}
\end{gathered}
$$

(d) $\operatorname{gcd}(1769,2378)=1769 x+2378 y$

Find $\operatorname{gcd}(1769,2378)$ by using the Euclidean Algorithm and retracing steps.

$$
\begin{align*}
& 2378=q_{1}(1769)+r_{1} \\
& 2378=(1)(1769)+609 \tag{eq.4}
\end{align*}
$$

Repeat for 1769 and 609

$$
\begin{align*}
& 1769=q_{2}(609)+r_{2} \\
& 1769=(2)(609)+551 \tag{eq.3}
\end{align*}
$$

Repeat with 609 and 551

$$
\begin{align*}
& 609=q_{3}(551)+r_{3} \\
& 609=(1)(551)+58 \tag{eq.2}
\end{align*}
$$

Repeat with 551 and 58

$$
\begin{align*}
& 551=q_{4}(58)+r_{4} \\
& 551=(9)(58)+29 \tag{eq.1}
\end{align*}
$$

Repeat with 58 and 29

$$
\begin{aligned}
& 58=q_{5}(29)+r_{5} \\
& 58=(2)(29)+0 \\
& \operatorname{gcd}(1769,2378)=\text { last non-zero remainder } \\
& \operatorname{gcd}(1769,2378)=29
\end{aligned}
$$

So, we want x and y such that $1769 x+2378 y=29$

$$
\begin{aligned}
& \quad 29=551-(9)(58) \quad \text { (From eq. 1) } \\
& \qquad 58=609-(1)(551) \quad \text { (From eq. 2) } \\
& \Rightarrow 29=551-(9)(609-(1)(551)) \\
& \Rightarrow 29=(-9)(609)+(10)(551) \\
& \qquad 551=1769-(2)(609) \quad \text { (From eq. 3) } \\
& \Rightarrow 29=(-9)(609)+(10)(1769-(2)(609)) \\
& \Rightarrow 29=(10)(1769)+(-29)(609) \\
& \quad 609=2378-(1)(1769) \quad \text { (From eq. 4) } \\
& \Rightarrow 29=(10)(1769)+(-29)(2378-(1)(1769)) \\
& \Rightarrow \\
& \hline
\end{aligned}
$$

Our particular solution is $\left(x_{0}, y_{0}\right)=(39,-29)$

The homogeneous solution is $\left(x_{h}, y_{h}\right)=\left(\frac{b}{d} t,-\frac{a}{d} t\right) ; \quad$ for $t \in \mathbb{Z}$

$$
=\left(\frac{2378}{29} t,-\frac{1769}{29} t\right)=(82 t,-61 t) ; \quad \text { for } t \in \mathbb{Z}
$$

The general solution is the sum of the particular solution and the homogeneous solution.

$$
(x, y)=\left(x_{0}, y_{0}\right)+\left(\frac{b}{d} t,-\frac{a}{d} t\right)=(39,-29)+(82 t,-61 t)=(39+82 t,-29-61 t) ; \text { for } t \in \mathbf{Z}
$$

Hence, all solutions are of the form:

$$
\begin{aligned}
& \qquad(x, y)=(39+82 t,-29-61 t) ; \quad \text { for } t \in \mathbf{Z} \\
& \text { i.e., } x=39+82 t ; \quad y=-29-61 t \quad \text { for } t \in \mathbf{Z}
\end{aligned}
$$

4. (a) If $\operatorname{gcd}(a, b)=1$, prove that $\operatorname{gcd}(a+b, a-b)=1$ or 2 .

Proof. Suppose that $\operatorname{gcd}(a, b)=1$.
Let $d=\operatorname{gcd}(a+b, a-b)$.
This means that d is a common divisor of $a+b$ and $a-b$, and hence, of their sum, $(a+b)+(a-b)=2 a$.
Similarly, d divides the difference of $a+b$ and $a-b$. (i.e., d divides $(a+b)-(a-b)=2 b$.)
Since d is a common divisor of $2 a$ and $2 b$, it follows that

$$
d \leq \operatorname{gcd}(2 a, 2 b)=2 \operatorname{gcd}(a, b)=2 \cdot 1=2
$$

i.e., $d \leq 2$.

Hence, $d=\operatorname{gcd}(a+b, a-b)=1$ or 2 .
4. (b) $\operatorname{gcd}(2 a+b, a+2 b)=1$ or 3 .

Proof.

Let $d=\operatorname{gcd}(2 a+b, a+2 b)$.
This means that d is a common divisor of $2 a+b$ and $a+2 b$, and hence, d divides any linear combination of $2 a+b$ and $a+2 b$.

In particular, d divides $2(2 a+b)-(a+2 b)=3 a$.
Also, d divides $-(2 a+b)+2(a+2 b)=3 b$.
i.e., d is a common divisor of $3 a$ and $3 b$.
$\Rightarrow d \mid \operatorname{gcd}(3 a, 3 b)$
Since $\underbrace{\operatorname{gcd}(3 a, 3 b)=3 \cdot \operatorname{gcd}(a, b)}_{\text {By Thm } 2.7}=3$, this implies that $d \mid 3$
Hence, $d=1$ or $d=3$

