# MTH 3318 Test \#1 - Solutions 

Spring 2024
Pat Rossi
Name $\qquad$

Instructions. Document your work fully.
For problems 1- 2 prove one using Mathematical Induction.

1. $2+4+6+\ldots+2 n=n^{2}+n$
i.e. $\sum_{i=1}^{n} 2 i=n^{2}+n$

## Proof.

i. Show that the proposition is true for $n=1$.
$\sum_{i=1}^{1} 2 i=2(1)=2=(1)^{2}+(1) \quad$ True.
ii. Assume that the proposition is true for $n=k$, and prove that the proposition is true for $n=k+1$.
i.e., Assume that $\sum_{i=1}^{k} 2 i=k^{2}+k$ for some natural number $k$, and show that $\sum_{i=1}^{k+1} 2 i=(k+1)^{2}+(k+1)$

## Observe:

$$
\begin{gathered}
\sum_{i=1}^{k+1} 2 i=\underbrace{\sum_{i=1}^{k} 2 i+2(k+1)=\left(k^{2}+k\right)+2(k+1)}_{\text {by Induction Hypothesis }} \\
=k(k+1)+2(k+1)=(k+2)(k+1) \\
=(k+1)(k+2)=(k+1)[(k+1)+1] \\
=(k+1)^{2}+(k+1)
\end{gathered}
$$

i.e., $\sum_{i=1}^{k+1} 2 i=(k+1)^{2}+(k+1)$

Hence, $\sum_{i=1}^{n} 2 i=n^{2}+n$ for all natural numbers, $n$.
2. $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$
i.e. $\sum_{j=1}^{n} \frac{1}{(2 j-1)(2 j+1)}=\frac{n}{2 n+1}$

## Proof.

i. Show true for $n=1$
$\sum_{j=1}^{1} \frac{1}{(2(1)-1)(2(1)+1)}=\frac{1}{(1)(3)}=\frac{1}{3}=\frac{1}{2(1)+1}$
ii. Assume true for $n=k$, and show true for $n=k+1$
i.e., Assume that $\sum_{j=1}^{k} \frac{1}{(2 j-1)(2 j+1)}=\frac{k}{2 k+1}$ for some natural number $k$, and show that $\sum_{j=1}^{k+1} \frac{1}{(2 j-1)(2 j+1)}=\frac{k+1}{2(k+1)+1}$
i.e., $\sum_{j=1}^{k+1} \frac{1}{(2 j-1)(2 j+1)}=\frac{k+1}{2 k+3}$

## Observe:

$$
\begin{aligned}
& \begin{aligned}
\sum_{j=1}^{k+1} \frac{1}{(2 j-1)(2 j+1)} & =\sum_{j=1}^{k} \frac{1}{(2 j-1)(2 j+1)}+\frac{1}{(2(k+1)-1)(2(k+1)+1)} \\
& =\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)} \text { (by Induction Hypothesis) } \\
& =\frac{k}{2 k+1} \cdot \frac{2 k+3}{2 k+3}+\frac{1}{(2 k+1)(2 k+3)}=\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)} \\
& =\frac{2 k+1)(k+1)}{(2 k+1)(2 k+3)}=\frac{(k+1)}{(2 k+3)} \\
\text { i.e., } \sum_{j=1}^{k+1} \frac{1}{(2 j-1)(2 j+1)} & =\frac{k+1}{2 k+3}
\end{aligned}
\end{aligned}
$$

Hence, $\sum_{j=1}^{n} \frac{1}{(2 j-1)(2 j+1)}=\frac{n}{2 n+1}$ for all natural numbers, $n$.

For problems 3-5 prove one using Mathematical Induction.
3. $2+6+10+\ldots+4 n-2=2 n^{2}$
i.e. $\sum_{i=1}^{n}(4 i-2)=2 n^{2}$

## Proof.

i. Show that the proposition is true for $n=1$.
$\sum_{i=1}^{1}(4 i-2)=(4(1)-2)=2=2(1)^{2} \quad$ True.
ii. Assume that the proposition is true for $n=k$, and prove that the proposition is true for $n=k+1$.
i.e., Assume that $\sum_{i=1}^{k}(4 i-2)=2 k^{2}$ for some natural number $k$, and show that $\sum_{i=1}^{k+1}(4 i-2)=2(k+1)^{2}$

## Observe:

$$
\begin{aligned}
\sum_{i=1}^{k+1}(4 i-2) & =\underbrace{\sum_{i=1}^{k}(4 i-2)+(4(k+1)-1)=2 k^{2}+(4(k+1)-2)}_{\text {by Induction Hypothesis }} \\
& =2 k^{2}+4 k+2=2\left(k^{2}+2 k+1\right)=2(k+1)^{2}
\end{aligned}
$$

i.e., $\sum_{i=1}^{k+1}(4 i-2)=2(k+1)^{2}$

Hence, $\sum_{i=1}^{n}(4 i-2)=2 n^{2}$ for all natural numbers, $n$.
4. $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$
i.e. $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$

## Proof.

i. Show true for $n=1$
$\sum_{i=1}^{1} i^{3}=(1)^{3}=1=\frac{(1)^{2}((1)+1)^{2}}{4}$
ii. Assume true for $n=k$, and show true for $n=k+1$
i.e., Assume that $\sum_{i=1}^{k} i^{3}=\frac{k^{2}(k+1)^{2}}{4}$ for some natural number $k$, and show that $\sum_{i=1}^{k+1} i^{3}=\frac{(k+1)^{2}((k+1)+1)^{2}}{4}$
i.e., $\sum_{i=1}^{k+1} i^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4}$

## Observe:

$\sum_{i=1}^{k+1} i^{3}=\underbrace{\sum_{i=1}^{k} i^{3}+(k+1)^{3}=\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}}_{\text {by Induction Hypothesis }}=\frac{k^{2}(k+1)^{2}}{4}+\frac{4(k+1)^{3}}{4}$
$=\frac{(k+1)^{2}}{4}\left[k^{2}+4(k+1)\right]=\frac{(k+1)^{2}}{4}\left[k^{2}+4 k+4\right]=\frac{(k+1)^{2}(k+2)^{2}}{4}$
i.e., $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for all natural numbers, $n$.
5. $\frac{n^{4}}{4}<1^{3}+2^{3}+3^{3}+\ldots+n^{3}$ all natural numbers, $n$.

## Proof.

i. Show true for $n=1$

$$
\frac{1^{4}}{4}<1=1^{3}
$$

ii. Assume true for $n=k$, and show true for $n=k+1$
i.e., Assume that $\frac{k^{4}}{4}<1^{3}+2^{3}+3^{3}+\ldots+k^{3}$ for some natural number $k$, and show that $\frac{(k+1)^{4}}{4}<1^{3}+2^{3}+3^{3}+\ldots+(k+1)^{3}$

## Observe:

$\underbrace{1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}>\frac{k^{4}}{4}+(k+1)^{3}}=\frac{k^{4}}{4}+\frac{4(k+1)^{3}}{4}=\frac{k^{4}+4 k^{3}+12 k^{2}+12 k+4}{4}$
by Induction Hypothesis
$>\frac{k^{4}+4 k^{3}+6 k^{2}+4 k+1}{4}=\frac{(k+1)^{4}}{4}$
i.e., $1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}>\frac{(k+1)^{4}}{4}$

Hence, $\frac{n^{4}}{4}<1^{3}+2^{3}+3^{3}+\ldots+n^{3}$ for all natural numbers, $n$.

For problems 6-7, prove one using Mathematical Induction:
6. For $0 \leq a \leq b$; prove that $a^{n} \leq b^{n}$.

## Proof.

i. Show true for $n=1$.

$$
\begin{aligned}
& a^{1}=\underbrace{a \leq b}_{\text {given }}=b^{1} \\
& \text { i.e., } a^{1} \leq b^{1}
\end{aligned}
$$

ii. Assume true for $n=k$, and show true for $n=k+1$
i.e., Assume that $a^{k} \leq b^{k}$ for some natural number $k$, and show that $a^{k+1} \leq b^{k+1}$

## Observe:

$$
a^{k+1}=a^{k} \cdot a=\underbrace{b^{k} \cdot a}_{\text {by Ind. Hyp. }}=\underbrace{b^{k} \cdot b}_{a \leq b}=b^{k+1}
$$

i.e., $a^{k+1} \leq b^{k+1}$

Hence, $a^{n} \leq b^{n}$ for all natural numbers, $n$.
7. Given that $\frac{d}{d x}\left[x^{0}\right]=0$ and $\frac{d}{d x}\left[x^{1}\right]=1$, prove that $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$. You may use the product rule: $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$.

## Proof.

i. Show true for $n=1$
$\underbrace{\frac{d}{d x}\left[x^{1}\right]=1}_{\text {given }}=1 \cdot x^{1-1}$
i.e., $\frac{d}{d x}\left[x^{1}\right]=1 \cdot x^{1-1}$.
ii. Assume true for $n=k$, and show true for $n=k+1$
i.e., Assume that $\frac{d}{d x}\left[x^{k}\right]=k x^{k-1}$ for some natural number $k$, and show that $\frac{d}{d x}\left[x^{k+1}\right]=(k+1) x^{(k+1)-1}$
re-written: $\frac{d}{d x}\left[x^{k+1}\right]=(k+1) x^{k}$
Observe:

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{k+1}\right]=\underbrace{\frac{d}{d x}\left[x^{k} \cdot x\right]=\left(\frac{d}{d x}\left[x^{k}\right]\right) x+\left(\frac{d}{d x}[x]\right) x^{k}}_{\text {Product Rule }} \\
& =\underbrace{k x^{k-1}}_{\text {by Ind Hyp }} \cdot x+\underbrace{1}_{\text {given }} \cdot x^{k}=k x^{k}+x^{k}=(k+1) x^{k} \\
& \text { i.e., } \frac{d}{d x}\left[x^{k+1}\right]=(k+1) x^{k} \\
& \text { Hence, } \frac{d}{d x}\left[x^{n}\right]=n x^{n-1} \text { for all natural numbers, } n . ~
\end{aligned}
$$

For problems 8-9, prove one using Mathematical Induction:
8. $(1+x)^{n} \geq 1+n x$ for any natural number $n$ and any real number $x \geq-1$.

## Proof.

i. Show true for $n=1$

$$
(1+x)^{1}=1+x \geq 1+(1) x
$$

ii. Assume true for $n=k$, and show true for $n=k+1$
i.e., Assume that $(1+x)^{k} \geq 1+k x$ for some natural number $k$, and show that $(1+x)^{k+1} \geq 1+(k+1) x$

## Observe:

$(1+x)^{k+1}=\underbrace{(1+x)^{k}(1+x) \geq(1+k x)(1+x)}_{\text {by Induction Hypothesis }}=1+k x+x+k x^{2}$
$=1+(k+1) x+\underbrace{k x^{2}}_{k x^{2} \geq 0} \geq 1+(k+1) x$
i.e., $(1+x)^{k+1} \geq 1+(k+1) x$

Hence, $(1+x)^{n} \geq 1+n x$ for all natural numbers $n$ and any real
number $x \geq-1$
Our proof hinged on two subtle points:
First, since $k$ is a natural number (hence greater than zero) and $x^{2} \geq 0$ for ALL real numbers $x$, it follows that $k x^{2} \geq 0$.

Second, since it is given that $x \geq-1$ (or equivalently, $(1+x) \geq 0$ ), the direction of the inequality, $(1+x)^{k} \geq 1+k x$, is preserved when both sides are multiplied by $(1+x)$ during the application of the induction hypothesis.
9. Given that $\left|x_{1}+x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|$ (the Triangle Inequality); Prove by induction that: $\left|x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{n}\right|$ (the General Triangle Inequality).

## Proof.

i. Show that the proposition is true for $n=1$.
$\left|x_{1}\right| \leq\left|x_{1}\right| . \quad$ True.
ii. Assume that the proposition is true for $n=k$, and prove that the proposition is true for $n=k+1$.
i.e., Assume that $\left|x_{1}+x_{2}+x_{3}+\ldots+x_{k}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{k}\right|$ and show that
$\left|x_{1}+x_{2}+x_{3}+\ldots+x_{k}+x_{k+1}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{k}\right|+\left|x_{k+1}\right|$.
Observe:

$$
\begin{aligned}
& \underbrace{\left|\left(x_{1}+x_{2}+x_{3}+\ldots+x_{k}\right)+x_{k+1}\right| \leq\left|x_{1}+x_{2}+x_{3}+\ldots+x_{k}\right|+\left|x_{k+1}\right|}_{\text {from given }} \\
& \leq \underbrace{\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{k}\right|+\left|x_{k+1}\right|}_{\text {by Ind. Hyp. }} .
\end{aligned}
$$

$$
\text { i.e., }\left|x_{1}+x_{2}+x_{3}+\ldots+x_{k}+x_{k+1}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{k}\right|+\left|x_{k+1}\right| .
$$

Hence, $\left|x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\ldots+\left|x_{n}\right|$ for all nat. numbers, $n$.

