MTH 4441 Practice Final Exam Part #3

Fall 2023

Pat Rossi

Name _

1. Define - permutation

2. Define - *r*-cycle (or cycle).

3. Prove: Let $S = \{1, 2, 3, ..., n\}$ and let S_n be the set of all permutations $f : S \to S$. Furthermore, let \circ be the operation of function composition. Then (S_n, \circ) is a group.

4. Define - disjoint cycles

5. Define - transposition

6. For Exercises 6-7, State two theorems about permutations.

7.

8. Perform the indicated operations in S_6

9. Express the permutation below as a "product" of disjoint cycles and then as the "product" of transpositions. Classify the permutation as being either **even** or **odd**.

10. Given $(U_5, \odot) = (\{1, 2, 3, 4\}, \odot)$, construct a group of permutations on U_5 that is isomorphic to (U_5, \odot) , and exhibit an isomorphism from (U_5, \odot) to this group.

11. Consider the group (G, *) given in the table below:

*	e	a	b	c
e	e	a	b	С
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Construct a group of permutations on G that is isomorphic to (G, *), and exhibit an isomorphism from (G, *) to this group.

12. We are given a group (G, *), and an element $x \in G$. Given also that $x^5 = e$ and that $x^3 = e$, prove that x = e.