MTH 4436 HW Set 2.1

Summer 2023
Pat Rossi
Name \qquad

Set 2.1
1.a. A number is triangular if and only if it is of the form $\frac{n(n+1)}{2}$.

Recall that the $n^{\text {th }}$ triangular number t_{n} is equal to the number of dots in a right, equilateral triangle that consists of n rows of dots. The first row has 1 dot and each row after that has one more dot than its predecessor. This is tantamount to saying that $\forall n \in \mathbb{N}, t_{n}=$ $1+2+3+\ldots+n$.

In Exercise 1.a on page 5 of our text, we proved (by induction) that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$.
Thus, $\forall n \in \mathbb{N}$, $t_{n}=\frac{n(n+1)}{2}$
Alternatively: We can use a "dot diagram proof."

Sum of dots $=n(n+1)=t_{n}+t_{n}=2 t_{n}$

1. Observe that by placing 2 copies of the dots corresponding to the $n^{\text {th }}$ triangular number t_{n}, as shown above, we create a rectangle of dots having $(n+1)$ rows and n columns of dots. (i.e., having $n(n+1)$ total dots.)

Thus, $t_{n}+t_{n}=n(n+1)$.
or: $2 t_{n}=n(n+1)$.
Hence, $t_{n}=\frac{n(n+1)}{2}$.
1.b. The integer n is a triangular number if and only if $8 n+1$ is a perfect square.

This one's not obvious (at least it wasn't obvious to me!)
To make a transition form the mysterious to the obvious, I am going to prove an "intermediate result," Namely, that the integer n is an oblong number if and only if $4 n+1$ is a perfect square.
Recall: The $n^{\text {th }}$ oblong number o_{n} is the number of dots in a rectangular array of dots in which there are $n+1$ rows and n columns. The first few oblong numbers are shown below:

Now note that 4 rectangles, each containing o_{k} number of dots can be positioned around a single dot so as to form a square containing $(2 k+1)$ rows and $(2 k+1)$ columns of dots.

$$
\text { Sum of dots }=4 \mathrm{o}_{\mathrm{k}}+1=(2 \mathrm{k}+1)^{2}
$$

We have established that if n is an oblong number, then $4 n+1$ is a perfect square.
Our next step is to show that for any $n \in \mathbb{N}, t_{n}+t_{n}=o_{n}$ (i.e., $2 t_{n}=o_{n}$).
This can be seen from the fiagram below:

$$
\text { Sum of dots }=o_{k}=2 \mathrm{t}_{\mathrm{k}}
$$

Thus, for any $n \in \mathbb{N},(2 n+1)^{2}=4 o_{n}+1=4\left(2 t_{n}\right)+1=8 t_{n}+1$
i.e., $8 t_{n}+1=(2 n+1)^{2}$, for any $n \in \mathbb{N}$.

This fact is depicted graphically, below:

$$
\text { Sum of dots }=8 \mathrm{t}_{\mathrm{k}}+1=(2 \mathrm{k}+1)^{2}
$$

1.c. The sum, of any two consecutive triangular numbers is a perfect square.

Note that $t_{n+1}=t_{n}+(n+1)$. (Geometrically, the $n+1^{s t}$ triangle is formed by taking the $n^{t h}$ triangle and adding a row containing $n+1$ dots.)

Combine this with the result from part a) that the $n^{t h}$ triangular number, $t_{n}=\frac{n(n+1)}{2}$, and we have:

$$
\begin{aligned}
t_{n}+t_{n+1} & =t_{n}+\left[t_{n}+(n+1)\right]=2 t_{n}+n+1=2 \frac{n(n+1)}{2}+n+1=n(n+1)+n+1 \\
& =(n+1)(n+1)=(n+1)^{2}
\end{aligned}
$$

$$
\text { i.e., } t_{n}+t_{n+1}=(n+1)^{2}
$$

Hence, the sum of any two consecutive triangular numbers is a perfect square.
Alternatively: We can use a "dot diagram proof."
Observe, from the dot diagrams below, that two "dot diagrams" - one representing the $n^{\text {th }}$ triangular number t_{n}, and one representing the $(n+1)^{\text {st }}$ triangular number t_{n+1}, can be situated in such a way as to form a square containing $(n+1)$ rows and columns of dots.

Thus, $t_{n}+t_{n+1}=(n+1)^{2}$.

7. Show that the difference between the squares of two consecutive triangular numbers is always a cube.

Proof:

Recall: $t_{n}=\frac{n(n+1)}{2}$ is the $\mathrm{n}^{\text {th }}$ triangular number.
Consequently: $t_{n+1}=\frac{(n+1)(n+2)}{2}$
Consider: $t_{n+1}^{2}-t_{n}^{2}=\left(\frac{(n+1)(n+2)}{2}\right)^{2}-\left(\frac{n(n+1)}{2}\right)^{2}$

$$
=\underbrace{\left(\frac{(n+1)(n+2)}{2}+\frac{n(n+1)}{2}\right)\left(\frac{(n+1)(n+2)}{2}-\frac{n(n+1)}{2}\right)}_{\text {Difference of Perfect Squares }}
$$

$=\left(\frac{(n+1)[(n+2)+n]}{2}\right)\left(\frac{(n+1)[(n+2)-n]}{2}\right)=\left(\frac{(n+1)(2 n+2)}{2}\right)\left(\frac{(n+1)(2)}{2}\right)$
$=\left(\frac{(n+1)(n+1)(2)}{2}\right)\left(\frac{(n+1)(2)}{2}\right)=(n+1)(n+1)(n+1)=(n+1)^{3}$
i.e., $t_{n+1}^{2}-t_{n}^{2}=s_{n+1}^{3}$

