1.
$$\frac{3x^3 + 2x^2 - 4x + 1}{x^2 + 1} = 3x + 2 + \frac{-7x - 1}{x^2 + 1} = 3x + 2 - \frac{7x + 1}{x^2 + 1}$$

Here's how we arrived at the result:

Compare the leading term of the divisor $(x^2 + 1)$ with the leading term of the dividend $(3x^3 + 2x^2 - 4x + 1)$

 x^2 is the leading term of the divisor

 $3x^3$ is the leading term of the dividend

 x^2 "goes into" $3x^3$ 3x times.

Compare the leading term of the divisor $(x^2 + 1)$ with the leading term of the remainder $(2x^2 - 7x + 1)$

 x^2 is the leading term of the divisor

 $2x^2$ is the leading term of the remainder

 x^2 "goes into" $2x^2$ 2 times.

Compare the leading term of the divisor $(x^2 + 1)$ with the leading term of the remainder -7x, we find that the remainder is of lesser degree than the divisor

The process terminates with us dividing -7x - 1 by $x^2 + 1$.

i.e.,
$$\frac{3x^3+2x^2-4x+1}{x^2+1} = 3x+2+\frac{-7x-1}{x^2+1} = 3x+2-\frac{7x+1}{x^2+1}$$

2.
$$\frac{3x^3+2x^2+1}{x^2+x+1} = 3x-1+\frac{-2x+2}{x^2+x+1} = 3x-1-\frac{2x-2}{x^2+x+1}$$

Here's how we arrived at the result:

Compare the leading term of the divisor $(x^2 + x + 1)$ with the leading term of the dividend $(3x^3 + 2x^2 + 1)$

 x^2 is the leading term of the divisor

 $3x^3$ is the leading term of the dividend

 x^2 "goes into" $3x^3$ 3x times.

Compare the leading term of the divisor $(x^2 + x + 1)$ with the leading term of the remainder $(x^2 - 3x + 1)$

 x^2 is the leading term of the divisor

 $-x^2$ is the leading term of the remainder

 x^2 "goes into" $-x^2$ -1 time.

Compare the leading term of the divisor $(x^2 + x + 1)$ with the leading term of the remainder -2x, we find that the remainder is of lesser degree than the divisor

The process terminates with us dividing -2x + 2 by $x^2 + x + 1$.

i.e.,
$$\frac{3x^3+2x^2+1}{x^2+x+1} = 3x-1 + \frac{-2x+2}{x^2+x+1} = 3x-1 - \frac{2x-2}{x^2+x+1}$$

3.
$$\frac{2x^4 + 3x^2 - 2x + 2}{(x-1)^2} = \frac{2x^4 + 3x^2 - 2x + 2}{x^2 - 2x + 1} = 2x^2 + 4x + 9 + \frac{12x - 7}{x^2 - 2x + 1}$$

Here's how we arrived at the result:

Compare the leading term of the divisor $(x^2 - 2x + 1)$ with the leading term of the dividend $(2x^4 + 3x^2 - 2x + 2)$

 x^2 is the leading term of the divisor

 $2x^4$ is the leading term of the dividend

 x^2 "goes into" $2x^4$ $2x^2$ times.

Compare the leading term of the divisor $(x^2 - 2x + 1)$ with the leading term of the remainder $(4x^3 + x^2 - 2x + 2)$

 x^2 is the leading term of the divisor

 $4x^3$ is the leading term of the remainder

 x^2 "goes into" $4x^3$ 4x times.

Compare the leading term of the divisor $(x^2 - 2x + 1)$ with the leading term of the remainder $(9x^2 - 6x + 2)$

 x^2 is the leading term of the divisor

 $9x^2$ is the leading term of the remainder

 x^2 "goes into" $9x^2$ 9 times.

Compare the leading term of the divisor $(x^2 - 2x + 1)$ with the leading term of the remainder 12x - 7, we find that the remainder is of lesser degree than the divisor

The process terminates with us dividing 12x - 7 by $x^2 - 2x + 1$.

i.e.,
$$\frac{2x^4+3x^2-2x+2}{(x-1)^2} = \frac{2x^4+3x^2-2x+2}{x^2-2x+1} = 2x^2+4x+9+\frac{12x-7}{x^2-2x+1}$$

4.
$$\frac{3x^4+5x^2-7}{x^2+2x}$$

i.e.,
$$\frac{3x^4+5x^2-7}{x^2+2x} = 3x^2 - 6x + 17 + \frac{-34x-7}{x^2+2x}$$

or:
$$\frac{3x^4 + 5x^2 - 7}{x^2 + 2x} = 3x^2 - 6x + 17 - \frac{34x + 7}{x^2 + 2x}$$

$$5. \ \frac{3x^3 - 6x^2 + 4x + 5}{x^3 + 2x}$$

i.e.,
$$\frac{3x^3 - 6x^2 + 4x + 5}{x^3 + 2x} = 3 + \frac{-6x^2 - 2x + 5}{x^3 + 2x}$$

or:
$$\frac{3x^4 + 5x^2 - 7}{x^2 + 2x} = 3 - \frac{6x^2 + 2x - 5}{x^3 + 2x}$$